Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgenlem Structured version   Visualization version   GIF version

Theorem 1stckgenlem 21558
 Description: The one-point compactification of ℕ is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
1stckgen.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stckgen.2 (𝜑𝐹:ℕ⟶𝑋)
1stckgen.3 (𝜑𝐹(⇝𝑡𝐽)𝐴)
Assertion
Ref Expression
1stckgenlem (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)

Proof of Theorem 1stckgenlem
Dummy variables 𝑗 𝑘 𝑛 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2 ssun2 3920 . . . . . . . . 9 {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})
3 1stckgen.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 1stckgen.3 . . . . . . . . . . 11 (𝜑𝐹(⇝𝑡𝐽)𝐴)
5 lmcl 21303 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴𝑋)
63, 4, 5syl2anc 696 . . . . . . . . . 10 (𝜑𝐴𝑋)
7 snssg 4459 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
92, 8mpbiri 248 . . . . . . . 8 (𝜑𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
109adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
111, 10sseldd 3745 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 𝑢)
12 eluni2 4592 . . . . . 6 (𝐴 𝑢 ↔ ∃𝑤𝑢 𝐴𝑤)
1311, 12sylib 208 . . . . 5 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑤𝑢 𝐴𝑤)
14 nnuz 11916 . . . . . . 7 ℕ = (ℤ‘1)
15 simprr 813 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐴𝑤)
16 1zzd 11600 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 1 ∈ ℤ)
174ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐹(⇝𝑡𝐽)𝐴)
18 simplrl 819 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢 ∈ 𝒫 𝐽)
1918elpwid 4314 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢𝐽)
20 simprl 811 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝑢)
2119, 20sseldd 3745 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝐽)
2214, 15, 16, 17, 21lmcvg 21268 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
23 imassrn 5635 . . . . . . . . . . . . 13 (𝐹 “ (1...𝑗)) ⊆ ran 𝐹
24 ssun1 3919 . . . . . . . . . . . . 13 ran 𝐹 ⊆ (ran 𝐹 ∪ {𝐴})
2523, 24sstri 3753 . . . . . . . . . . . 12 (𝐹 “ (1...𝑗)) ⊆ (ran 𝐹 ∪ {𝐴})
26 id 22 . . . . . . . . . . . 12 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2725, 26syl5ss 3755 . . . . . . . . . . 11 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (𝐹 “ (1...𝑗)) ⊆ 𝑢)
28 1stckgen.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℕ⟶𝑋)
29 frn 6214 . . . . . . . . . . . . . . . . . . 19 (𝐹:ℕ⟶𝑋 → ran 𝐹𝑋)
3028, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran 𝐹𝑋)
3123, 30syl5ss 3755 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝑋)
32 resttopon 21167 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑋) → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
333, 31, 32syl2anc 696 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
34 topontop 20920 . . . . . . . . . . . . . . . 16 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
3533, 34syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
36 fzfid 12966 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑗) ∈ Fin)
37 ffun 6209 . . . . . . . . . . . . . . . . . . . 20 (𝐹:ℕ⟶𝑋 → Fun 𝐹)
3828, 37syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Fun 𝐹)
39 elfznn 12563 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
4039ssriv 3748 . . . . . . . . . . . . . . . . . . . 20 (1...𝑗) ⊆ ℕ
41 fdm 6212 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℕ⟶𝑋 → dom 𝐹 = ℕ)
4228, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℕ)
4340, 42syl5sseqr 3795 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑗) ⊆ dom 𝐹)
44 fores 6285 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
4538, 43, 44syl2anc 696 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
46 fofi 8417 . . . . . . . . . . . . . . . . . 18 (((1...𝑗) ∈ Fin ∧ (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) → (𝐹 “ (1...𝑗)) ∈ Fin)
4736, 45, 46syl2anc 696 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ∈ Fin)
48 pwfi 8426 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (1...𝑗)) ∈ Fin ↔ 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
4947, 48sylib 208 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
50 restsspw 16294 . . . . . . . . . . . . . . . 16 (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))
51 ssfi 8345 . . . . . . . . . . . . . . . 16 ((𝒫 (𝐹 “ (1...𝑗)) ∈ Fin ∧ (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
5249, 50, 51sylancl 697 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
5335, 52elind 3941 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin))
54 fincmp 21398 . . . . . . . . . . . . . 14 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
5553, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
56 topontop 20920 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
573, 56syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
58 toponuni 20921 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
593, 58syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
6031, 59sseqtrd 3782 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝐽)
61 eqid 2760 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
6261cmpsub 21405 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐹 “ (1...𝑗)) ⊆ 𝐽) → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
6357, 60, 62syl2anc 696 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
6455, 63mpbid 222 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6564r19.21bi 3070 . . . . . . . . . . 11 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6627, 65syl5 34 . . . . . . . . . 10 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6766impr 650 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
6867adantr 472 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
69 inss1 3976 . . . . . . . . . . . . . 14 (𝒫 𝑢 ∩ Fin) ⊆ 𝒫 𝑢
70 simprl 811 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ (𝒫 𝑢 ∩ Fin))
7169, 70sseldi 3742 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ 𝒫 𝑢)
7271elpwid 4314 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠𝑢)
73 simprll 821 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → 𝑤𝑢)
7473adantr 472 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑤𝑢)
7574snssd 4485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝑤} ⊆ 𝑢)
7672, 75unssd 3932 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ⊆ 𝑢)
77 vex 3343 . . . . . . . . . . . 12 𝑢 ∈ V
7877elpw2 4977 . . . . . . . . . . 11 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑢)
7976, 78sylibr 224 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢)
80 inss2 3977 . . . . . . . . . . . 12 (𝒫 𝑢 ∩ Fin) ⊆ Fin
8180, 70sseldi 3742 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ Fin)
82 snfi 8203 . . . . . . . . . . 11 {𝑤} ∈ Fin
83 unfi 8392 . . . . . . . . . . 11 ((𝑠 ∈ Fin ∧ {𝑤} ∈ Fin) → (𝑠 ∪ {𝑤}) ∈ Fin)
8481, 82, 83sylancl 697 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ Fin)
8579, 84elind 3941 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin))
86 ffn 6206 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶𝑋𝐹 Fn ℕ)
8728, 86syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℕ)
8887ad3antrrr 768 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐹 Fn ℕ)
89 simprrr 824 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
9089adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
91 fveq2 6352 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
9291eleq1d 2824 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ 𝑤 ↔ (𝐹𝑛) ∈ 𝑤))
9392rspccva 3448 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
9490, 93sylan 489 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
95 elun2 3924 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ 𝑤 → (𝐹𝑛) ∈ ( 𝑠𝑤))
9694, 95syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
9796adantlr 753 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
98 elnnuz 11917 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
9998anbi1i 733 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
100 elfzuzb 12529 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑗) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
10199, 100bitr4i 267 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ 𝑛 ∈ (1...𝑗))
102 simprr 813 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝐹 “ (1...𝑗)) ⊆ 𝑠)
103 funimass4 6409 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
10438, 43, 103syl2anc 696 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
105104ad3antrrr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
106102, 105mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠)
107106r19.21bi 3070 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ 𝑠)
108 elun1 3923 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ 𝑠 → (𝐹𝑛) ∈ ( 𝑠𝑤))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
110101, 109sylan2b 493 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ (𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛))) → (𝐹𝑛) ∈ ( 𝑠𝑤))
111110anassrs 683 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
112 simprl 811 . . . . . . . . . . . . . . . 16 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝑗 ∈ ℕ)
113112ad2antlr 765 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑗 ∈ ℕ)
114 nnz 11591 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
115 nnz 11591 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
116 uztric 11901 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
117114, 115, 116syl2an 495 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
118113, 117sylan 489 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
11997, 111, 118mpjaodan 862 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( 𝑠𝑤))
120119ralrimiva 3104 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤))
121 fnfvrnss 6553 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤)) → ran 𝐹 ⊆ ( 𝑠𝑤))
12288, 120, 121syl2anc 696 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ran 𝐹 ⊆ ( 𝑠𝑤))
123 elun2 3924 . . . . . . . . . . . . . 14 (𝐴𝑤𝐴 ∈ ( 𝑠𝑤))
124123ad2antlr 765 . . . . . . . . . . . . 13 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝐴 ∈ ( 𝑠𝑤))
125124ad2antlr 765 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐴 ∈ ( 𝑠𝑤))
126125snssd 4485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝐴} ⊆ ( 𝑠𝑤))
127122, 126unssd 3932 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ ( 𝑠𝑤))
128 uniun 4608 . . . . . . . . . . 11 (𝑠 ∪ {𝑤}) = ( 𝑠 {𝑤})
129 vex 3343 . . . . . . . . . . . . 13 𝑤 ∈ V
130129unisn 4603 . . . . . . . . . . . 12 {𝑤} = 𝑤
131130uneq2i 3907 . . . . . . . . . . 11 ( 𝑠 {𝑤}) = ( 𝑠𝑤)
132128, 131eqtri 2782 . . . . . . . . . 10 (𝑠 ∪ {𝑤}) = ( 𝑠𝑤)
133127, 132syl6sseqr 3793 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤}))
134 unieq 4596 . . . . . . . . . . 11 (𝑣 = (𝑠 ∪ {𝑤}) → 𝑣 = (𝑠 ∪ {𝑤}))
135134sseq2d 3774 . . . . . . . . . 10 (𝑣 = (𝑠 ∪ {𝑤}) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑣 ↔ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})))
136135rspcev 3449 . . . . . . . . 9 (((𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13785, 133, 136syl2anc 696 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13868, 137rexlimddv 3173 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
139138anassrs 683 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
14022, 139rexlimddv 3173 . . . . 5 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
14113, 140rexlimddv 3173 . . . 4 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
142141expr 644 . . 3 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
143142ralrimiva 3104 . 2 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
1446snssd 4485 . . . . 5 (𝜑 → {𝐴} ⊆ 𝑋)
14530, 144unssd 3932 . . . 4 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑋)
146145, 59sseqtrd 3782 . . 3 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽)
14761cmpsub 21405 . . 3 ((𝐽 ∈ Top ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽) → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
14857, 146, 147syl2anc 696 . 2 (𝜑 → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
149143, 148mpbird 247 1 (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  𝒫 cpw 4302  {csn 4321  ∪ cuni 4588   class class class wbr 4804  dom cdm 5266  ran crn 5267   ↾ cres 5268   “ cima 5269  Fun wfun 6043   Fn wfn 6044  ⟶wf 6045  –onto→wfo 6047  ‘cfv 6049  (class class class)co 6813  Fincfn 8121  1c1 10129  ℕcn 11212  ℤcz 11569  ℤ≥cuz 11879  ...cfz 12519   ↾t crest 16283  Topctop 20900  TopOnctopon 20917  ⇝𝑡clm 21232  Compccmp 21391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fi 8482  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-rest 16285  df-topgen 16306  df-top 20901  df-topon 20918  df-bases 20952  df-lm 21235  df-cmp 21392 This theorem is referenced by:  1stckgen  21559
 Copyright terms: Public domain W3C validator