MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcrestlem Structured version   Visualization version   GIF version

Theorem 1stcrestlem 21236
Description: Lemma for 1stcrest 21237. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
1stcrestlem (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem 1stcrestlem
StepHypRef Expression
1 ordom 7059 . . . . . 6 Ord ω
2 reldom 7946 . . . . . . . 8 Rel ≼
32brrelex2i 5149 . . . . . . 7 (𝐵 ≼ ω → ω ∈ V)
4 elong 5719 . . . . . . 7 (ω ∈ V → (ω ∈ On ↔ Ord ω))
53, 4syl 17 . . . . . 6 (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω))
61, 5mpbiri 248 . . . . 5 (𝐵 ≼ ω → ω ∈ On)
7 ondomen 8845 . . . . 5 ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card)
86, 7mpancom 702 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ dom card)
9 eqid 2620 . . . . 5 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
109dmmptss 5619 . . . 4 dom (𝑥𝐵𝐶) ⊆ 𝐵
11 ssnum 8847 . . . 4 ((𝐵 ∈ dom card ∧ dom (𝑥𝐵𝐶) ⊆ 𝐵) → dom (𝑥𝐵𝐶) ∈ dom card)
128, 10, 11sylancl 693 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ∈ dom card)
13 funmpt 5914 . . . 4 Fun (𝑥𝐵𝐶)
14 funforn 6109 . . . 4 (Fun (𝑥𝐵𝐶) ↔ (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶))
1513, 14mpbi 220 . . 3 (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶)
16 fodomnum 8865 . . 3 (dom (𝑥𝐵𝐶) ∈ dom card → ((𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶) → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶)))
1712, 15, 16mpisyl 21 . 2 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶))
182brrelexi 5148 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
19 ssdomg 7986 . . . 4 (𝐵 ∈ V → (dom (𝑥𝐵𝐶) ⊆ 𝐵 → dom (𝑥𝐵𝐶) ≼ 𝐵))
2018, 10, 19mpisyl 21 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ 𝐵)
21 domtr 7994 . . 3 ((dom (𝑥𝐵𝐶) ≼ 𝐵𝐵 ≼ ω) → dom (𝑥𝐵𝐶) ≼ ω)
2220, 21mpancom 702 . 2 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ ω)
23 domtr 7994 . 2 ((ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶) ∧ dom (𝑥𝐵𝐶) ≼ ω) → ran (𝑥𝐵𝐶) ≼ ω)
2417, 22, 23syl2anc 692 1 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1988  Vcvv 3195  wss 3567   class class class wbr 4644  cmpt 4720  dom cdm 5104  ran crn 5105  Ord word 5710  Oncon0 5711  Fun wfun 5870  ontowfo 5874  ωcom 7050  cdom 7938  cardccrd 8746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-card 8750  df-acn 8753
This theorem is referenced by:  1stcrest  21237  2ndcrest  21238  lly1stc  21280  abrexct  29468  ldgenpisyslem1  30200  saliuncl  40305  meadjiun  40446
  Copyright terms: Public domain W3C validator