Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stpreima Structured version   Visualization version   GIF version

Theorem 1stpreima 30444
Description: The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
1stpreima (𝐴𝐵 → ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶))

Proof of Theorem 1stpreima
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 anass 471 . . . . . . 7 ((((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
21a1i 11 . . . . . 6 (𝐴𝐵 → ((((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))))
3 ssel 3963 . . . . . . . 8 (𝐴𝐵 → ((1st𝑤) ∈ 𝐴 → (1st𝑤) ∈ 𝐵))
43pm4.71d 564 . . . . . . 7 (𝐴𝐵 → ((1st𝑤) ∈ 𝐴 ↔ ((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵)))
54anbi1d 631 . . . . . 6 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ (((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
6 an12 643 . . . . . . . 8 ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))
76anbi2i 624 . . . . . . 7 (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
87a1i 11 . . . . . 6 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))))
92, 5, 83bitr4d 313 . . . . 5 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))))
10 elxp7 7726 . . . . . 6 (𝑤 ∈ (𝐵 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))
1110anbi2i 624 . . . . 5 (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))))
129, 11syl6rbbr 292 . . . 4 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
13 an12 643 . . . 4 (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶)))
1412, 13syl6bb 289 . . 3 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶))))
15 cnvresima 6089 . . . . 5 ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = ((1st𝐴) ∩ (𝐵 × 𝐶))
1615eleq2i 2906 . . . 4 (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ ((1st𝐴) ∩ (𝐵 × 𝐶)))
17 elin 4171 . . . 4 (𝑤 ∈ ((1st𝐴) ∩ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (1st𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)))
18 vex 3499 . . . . . 6 𝑤 ∈ V
19 fo1st 7711 . . . . . . 7 1st :V–onto→V
20 fofn 6594 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
21 elpreima 6830 . . . . . . 7 (1st Fn V → (𝑤 ∈ (1st𝐴) ↔ (𝑤 ∈ V ∧ (1st𝑤) ∈ 𝐴)))
2219, 20, 21mp2b 10 . . . . . 6 (𝑤 ∈ (1st𝐴) ↔ (𝑤 ∈ V ∧ (1st𝑤) ∈ 𝐴))
2318, 22mpbiran 707 . . . . 5 (𝑤 ∈ (1st𝐴) ↔ (1st𝑤) ∈ 𝐴)
2423anbi1i 625 . . . 4 ((𝑤 ∈ (1st𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
2516, 17, 243bitri 299 . . 3 (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ ((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
26 elxp7 7726 . . 3 (𝑤 ∈ (𝐴 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶)))
2714, 25, 263bitr4g 316 . 2 (𝐴𝐵 → (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ (𝐴 × 𝐶)))
2827eqrdv 2821 1 (𝐴𝐵 → ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938   × cxp 5555  ccnv 5556  cres 5559  cima 5560   Fn wfn 6352  ontowfo 6355  cfv 6357  1st c1st 7689  2nd c2nd 7690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692
This theorem is referenced by:  sxbrsigalem2  31546
  Copyright terms: Public domain W3C validator