MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7694
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4580 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5777 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4855 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7692 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5335 . . . . 5 {𝐴} ∈ V
65dmex 7619 . . . 4 dom {𝐴} ∈ V
76uniex 7470 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6771 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6666 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4656 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 218 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5777 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5793 . . . . . 6 dom ∅ = ∅
1412, 13syl6eq 2875 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4855 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4869 . . . 4 ∅ = ∅
1715, 16syl6eq 2875 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2862 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 184 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1536  wcel 2113  Vcvv 3497  c0 4294  {csn 4570   cuni 4841  dom cdm 5558  cfv 6358  1st c1st 7690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fv 6366  df-1st 7692
This theorem is referenced by:  1stnpr  7696  1st0  7698  op1st  7700  1st2val  7720  elxp6  7726  mpoxopxnop0  7884
  Copyright terms: Public domain W3C validator