MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval2 Structured version   Visualization version   GIF version

Theorem 1stval2 7049
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
1stval2 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)

Proof of Theorem 1stval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5086 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 3171 . . . . . 6 𝑥 ∈ V
3 vex 3171 . . . . . 6 𝑦 ∈ V
42, 3op1st 7040 . . . . 5 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
52, 3op1stb 4857 . . . . 5 𝑥, 𝑦⟩ = 𝑥
64, 5eqtr4i 2630 . . . 4 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥, 𝑦
7 fveq2 6084 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = (1st ‘⟨𝑥, 𝑦⟩))
8 inteq 4403 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
98inteqd 4405 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
106, 7, 93eqtr4a 2665 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝐴)
1110exlimivv 1845 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝐴)
121, 11sylbi 205 1 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wex 1694  wcel 1975  Vcvv 3168  cop 4126   cint 4400   × cxp 5022  cfv 5786  1st c1st 7030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-int 4401  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-iota 5750  df-fun 5788  df-fv 5794  df-1st 7032
This theorem is referenced by:  1stdm  7079
  Copyright terms: Public domain W3C validator