MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to2vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to2vfriswmgr 27259
Description: Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to2vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to2vfriswmgr
StepHypRef Expression
1 1vwmgr 27256 . . . . 5 ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
21a1d 25 . . . 4 ((𝐴𝑋𝑉 = {𝐴}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
32expcom 450 . . 3 (𝑉 = {𝐴} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
4 simpr 476 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝑋)
5 simpll 805 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐵 ∈ V)
6 simplr 807 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝐵)
74, 5, 63jca 1261 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵))
8 3vfriswmgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
98eqeq1i 2656 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐵} ↔ (Vtx‘𝐺) = {𝐴, 𝐵})
109biimpi 206 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵})
11 nfrgr2v 27252 . . . . . . . . . 10 (((𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
127, 10, 11syl2anr 494 . . . . . . . . 9 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → 𝐺 ∉ FriendGraph )
13 df-nel 2927 . . . . . . . . 9 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
1412, 13sylib 208 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → ¬ 𝐺 ∈ FriendGraph )
1514pm2.21d 118 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1615expcom 450 . . . . . 6 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1716ex 449 . . . . 5 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝐴𝑋 → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
1817com23 86 . . . 4 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
19 ianor 508 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) ↔ (¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵))
20 prprc2 4333 . . . . . . . 8 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
21 nne 2827 . . . . . . . . 9 𝐴𝐵𝐴 = 𝐵)
22 preq2 4301 . . . . . . . . . . 11 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2322eqcoms 2659 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
24 dfsn2 4223 . . . . . . . . . 10 {𝐴} = {𝐴, 𝐴}
2523, 24syl6eqr 2703 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2621, 25sylbi 207 . . . . . . . 8 𝐴𝐵 → {𝐴, 𝐵} = {𝐴})
2720, 26jaoi 393 . . . . . . 7 ((¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2819, 27sylbi 207 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2928eqeq2d 2661 . . . . 5 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} ↔ 𝑉 = {𝐴}))
3029, 3syl6bi 243 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3118, 30pm2.61i 176 . . 3 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
323, 31jaoi 393 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3332impcom 445 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wnel 2926  wral 2941  wrex 2942  ∃!wreu 2943  Vcvv 3231  cdif 3604  {csn 4210  {cpr 4212  cfv 5926  Vtxcvtx 25919  Edgcedg 25984   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-umgr 26023  df-usgr 26091  df-frgr 27237
This theorem is referenced by:  1to3vfriswmgr  27260
  Copyright terms: Public domain W3C validator