MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to2vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to2vfriswmgr 28060
Description: Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to2vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to2vfriswmgr
StepHypRef Expression
1 1vwmgr 28057 . . . . 5 ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
21a1d 25 . . . 4 ((𝐴𝑋𝑉 = {𝐴}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
32expcom 416 . . 3 (𝑉 = {𝐴} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
4 simpr 487 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝑋)
5 simpll 765 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐵 ∈ V)
6 simplr 767 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝐵)
74, 5, 63jca 1124 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵))
8 3vfriswmgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
98eqeq1i 2828 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐵} ↔ (Vtx‘𝐺) = {𝐴, 𝐵})
109biimpi 218 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵})
11 nfrgr2v 28053 . . . . . . . . . 10 (((𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
127, 10, 11syl2anr 598 . . . . . . . . 9 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → 𝐺 ∉ FriendGraph )
13 df-nel 3126 . . . . . . . . 9 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
1412, 13sylib 220 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → ¬ 𝐺 ∈ FriendGraph )
1514pm2.21d 121 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1615expcom 416 . . . . . 6 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1716ex 415 . . . . 5 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝐴𝑋 → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
1817com23 86 . . . 4 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
19 ianor 978 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) ↔ (¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵))
20 prprc2 4704 . . . . . . . 8 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
21 nne 3022 . . . . . . . . 9 𝐴𝐵𝐴 = 𝐵)
22 preq2 4672 . . . . . . . . . . 11 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2322eqcoms 2831 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
24 dfsn2 4582 . . . . . . . . . 10 {𝐴} = {𝐴, 𝐴}
2523, 24syl6eqr 2876 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2621, 25sylbi 219 . . . . . . . 8 𝐴𝐵 → {𝐴, 𝐵} = {𝐴})
2720, 26jaoi 853 . . . . . . 7 ((¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2819, 27sylbi 219 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2928eqeq2d 2834 . . . . 5 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} ↔ 𝑉 = {𝐴}))
3029, 3syl6bi 255 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3118, 30pm2.61i 184 . . 3 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
323, 31jaoi 853 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3332impcom 410 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wnel 3125  wral 3140  wrex 3141  ∃!wreu 3142  Vcvv 3496  cdif 3935  {csn 4569  {cpr 4571  cfv 6357  Vtxcvtx 26783  Edgcedg 26834   FriendGraph cfrgr 28039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-edg 26835  df-umgr 26870  df-usgr 26938  df-frgr 28040
This theorem is referenced by:  1to3vfriswmgr  28061
  Copyright terms: Public domain W3C validator