MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to3vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to3vfriswmgr 27008
Description: Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to3vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   𝐶,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to3vfriswmgr
StepHypRef Expression
1 df-3or 1037 . . 3 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) ↔ ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}))
2 3vfriswmgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 3vfriswmgr.e . . . . . 6 𝐸 = (Edg‘𝐺)
42, 31to2vfriswmgr 27007 . . . . 5 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
54expcom 451 . . . 4 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6 tppreq3 4264 . . . . . . 7 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
76eqeq2d 2631 . . . . . 6 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
8 olc 399 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}))
98anim1i 591 . . . . . . . . 9 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∧ 𝐴𝑋))
109ancomd 467 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})))
1110, 4syl 17 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1211ex 450 . . . . . 6 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
137, 12syl6bi 243 . . . . 5 (𝐵 = 𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
14 tpprceq3 4304 . . . . . . . 8 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → {𝐶, 𝐴, 𝐵} = {𝐶, 𝐴})
15 tprot 4254 . . . . . . . . . . . . 13 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
1615eqeq1i 2626 . . . . . . . . . . . 12 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
1716biimpi 206 . . . . . . . . . . 11 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴})
18 prcom 4237 . . . . . . . . . . 11 {𝐶, 𝐴} = {𝐴, 𝐶}
1917, 18syl6eq 2671 . . . . . . . . . 10 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶})
2019eqeq2d 2631 . . . . . . . . 9 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐶}))
21 olc 399 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐶} → (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶}))
222, 31to2vfriswmgr 27007 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2321, 22sylan2 491 . . . . . . . . . 10 ((𝐴𝑋𝑉 = {𝐴, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2423expcom 451 . . . . . . . . 9 (𝑉 = {𝐴, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
2520, 24syl6bi 243 . . . . . . . 8 ({𝐶, 𝐴, 𝐵} = {𝐶, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2614, 25syl 17 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
2726a1d 25 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐵𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
28 tpprceq3 4304 . . . . . . . 8 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → {𝐵, 𝐴, 𝐶} = {𝐵, 𝐴})
29 tpcoma 4255 . . . . . . . . . . . . 13 {𝐵, 𝐴, 𝐶} = {𝐴, 𝐵, 𝐶}
3029eqeq1i 2626 . . . . . . . . . . . 12 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} ↔ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
3130biimpi 206 . . . . . . . . . . 11 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴})
32 prcom 4237 . . . . . . . . . . 11 {𝐵, 𝐴} = {𝐴, 𝐵}
3331, 32syl6eq 2671 . . . . . . . . . 10 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
3433eqeq2d 2631 . . . . . . . . 9 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐴, 𝐵}))
358, 4sylan2 491 . . . . . . . . . . 11 ((𝐴𝑋𝑉 = {𝐴, 𝐵}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
3635expcom 451 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3736a1d 25 . . . . . . . . 9 (𝑉 = {𝐴, 𝐵} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3834, 37syl6bi 243 . . . . . . . 8 ({𝐵, 𝐴, 𝐶} = {𝐵, 𝐴} → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
3928, 38syl 17 . . . . . . 7 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐵𝐶 → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
4039com23 86 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐶𝐴) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
41 simpl 473 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵 ∈ V)
42 simpl 473 . . . . . . . . . . . . 13 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶 ∈ V)
4341, 42anim12i 589 . . . . . . . . . . . 12 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4443ad2antrr 761 . . . . . . . . . . 11 (((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4544anim1i 591 . . . . . . . . . 10 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → ((𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝐴𝑋))
4645ancomd 467 . . . . . . . . 9 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
47 3anass 1040 . . . . . . . . 9 ((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐴𝑋 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
4846, 47sylibr 224 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V))
49 simpr 477 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
5049necomd 2845 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ 𝐵𝐴) → 𝐴𝐵)
51 simpr 477 . . . . . . . . . . . . 13 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐶𝐴)
5251necomd 2845 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ 𝐶𝐴) → 𝐴𝐶)
5350, 52anim12i 589 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐴𝐵𝐴𝐶))
5453anim1i 591 . . . . . . . . . 10 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
55 df-3an 1038 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐵𝐶))
5654, 55sylibr 224 . . . . . . . . 9 ((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) → (𝐴𝐵𝐴𝐶𝐵𝐶))
5756ad2antrr 761 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐴𝐵𝐴𝐶𝐵𝐶))
58 simplr 791 . . . . . . . 8 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → 𝑉 = {𝐴, 𝐵, 𝐶})
592, 33vfriswmgr 27006 . . . . . . . 8 (((𝐴𝑋𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
6048, 57, 58, 59syl3anc 1323 . . . . . . 7 ((((((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) ∧ 𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐴𝑋) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
6160exp41 637 . . . . . 6 (((𝐵 ∈ V ∧ 𝐵𝐴) ∧ (𝐶 ∈ V ∧ 𝐶𝐴)) → (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))))
6227, 40, 61ecase 982 . . . . 5 (𝐵𝐶 → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
6313, 62pm2.61ine 2873 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
645, 63jaoi 394 . . 3 (((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
651, 64sylbi 207 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
6665impcom 446 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  ∃!wreu 2909  Vcvv 3186  cdif 3552  {csn 4148  {cpr 4150  {ctp 4152  cfv 5847  Vtxcvtx 25774  Edgcedg 25839   FriendGraph cfrgr 26986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-edg 25840  df-umgr 25874  df-usgr 25939  df-frgr 26987
This theorem is referenced by:  1to3vfriendship  27009
  Copyright terms: Public domain W3C validator