MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1vwmgr Structured version   Visualization version   GIF version

Theorem 1vwmgr 27982
Description: Every graph with one vertex (which may be connect with itself by (multiple) loops!) is a windmill graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Assertion
Ref Expression
1vwmgr ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝐴,,𝑣,𝑤   ,𝐸   ,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐸(𝑤,𝑣)   𝑋(𝑤,𝑣,)

Proof of Theorem 1vwmgr
StepHypRef Expression
1 ral0 4452 . . . 4 𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)
2 sneq 4567 . . . . . . . 8 ( = 𝐴 → {} = {𝐴})
32difeq2d 4096 . . . . . . 7 ( = 𝐴 → ({𝐴} ∖ {}) = ({𝐴} ∖ {𝐴}))
4 difid 4327 . . . . . . 7 ({𝐴} ∖ {𝐴}) = ∅
53, 4syl6eq 2869 . . . . . 6 ( = 𝐴 → ({𝐴} ∖ {}) = ∅)
6 preq2 4662 . . . . . . . 8 ( = 𝐴 → {𝑣, } = {𝑣, 𝐴})
76eleq1d 2894 . . . . . . 7 ( = 𝐴 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐴} ∈ 𝐸))
8 reueq1 3405 . . . . . . . 8 (({𝐴} ∖ {}) = ({𝐴} ∖ {𝐴}) → (∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
93, 8syl 17 . . . . . . 7 ( = 𝐴 → (∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
107, 9anbi12d 630 . . . . . 6 ( = 𝐴 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
115, 10raleqbidv 3399 . . . . 5 ( = 𝐴 → (∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
1211rexsng 4606 . . . 4 (𝐴𝑋 → (∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
131, 12mpbiri 259 . . 3 (𝐴𝑋 → ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
1413adantr 481 . 2 ((𝐴𝑋𝑉 = {𝐴}) → ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
15 difeq1 4089 . . . . 5 (𝑉 = {𝐴} → (𝑉 ∖ {}) = ({𝐴} ∖ {}))
16 reueq1 3405 . . . . . . 7 ((𝑉 ∖ {}) = ({𝐴} ∖ {}) → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
1715, 16syl 17 . . . . . 6 (𝑉 = {𝐴} → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
1817anbi2d 628 . . . . 5 (𝑉 = {𝐴} → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1915, 18raleqbidv 3399 . . . 4 (𝑉 = {𝐴} → (∀𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2019rexeqbi1dv 3402 . . 3 (𝑉 = {𝐴} → (∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2120adantl 482 . 2 ((𝐴𝑋𝑉 = {𝐴}) → (∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2214, 21mpbird 258 1 ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  ∃!wreu 3137  cdif 3930  c0 4288  {csn 4557  {cpr 4559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-sn 4558  df-pr 4560
This theorem is referenced by:  1to2vfriswmgr  27985
  Copyright terms: Public domain W3C validator