MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem4 Structured version   Visualization version   GIF version

Theorem 1wlkdlem4 26866
Description: Lemma 4 for 1wlkd 26867. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
Assertion
Ref Expression
1wlkdlem4 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem 1wlkdlem4
StepHypRef Expression
1 1wlkd.f . . . . . . . . . 10 𝐹 = ⟨“𝐽”⟩
21fveq1i 6149 . . . . . . . . 9 (𝐹‘0) = (⟨“𝐽”⟩‘0)
3 1wlkd.p . . . . . . . . . . . 12 𝑃 = ⟨“𝑋𝑌”⟩
4 1wlkd.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
5 1wlkd.y . . . . . . . . . . . 12 (𝜑𝑌𝑉)
6 1wlkd.l . . . . . . . . . . . 12 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
7 1wlkd.j . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
83, 1, 4, 5, 6, 71wlkdlem2 26864 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐼𝐽))
98elfvexd 6179 . . . . . . . . . 10 (𝜑𝐽 ∈ V)
10 s1fv 13329 . . . . . . . . . 10 (𝐽 ∈ V → (⟨“𝐽”⟩‘0) = 𝐽)
119, 10syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐽”⟩‘0) = 𝐽)
122, 11syl5eq 2667 . . . . . . . 8 (𝜑 → (𝐹‘0) = 𝐽)
1312fveq2d 6152 . . . . . . 7 (𝜑 → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1413adantr 481 . . . . . 6 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1514, 6eqtrd 2655 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = {𝑋})
16 df-ne 2791 . . . . . . 7 (𝑋𝑌 ↔ ¬ 𝑋 = 𝑌)
1716, 7sylan2br 493 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1813adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1917, 18sseqtr4d 3621 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))
2015, 19ifpimpda 1027 . . . 4 (𝜑 → if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
213fveq1i 6149 . . . . . 6 (𝑃‘0) = (⟨“𝑋𝑌”⟩‘0)
22 s2fv0 13568 . . . . . . 7 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
234, 22syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
2421, 23syl5eq 2667 . . . . 5 (𝜑 → (𝑃‘0) = 𝑋)
253fveq1i 6149 . . . . . 6 (𝑃‘1) = (⟨“𝑋𝑌”⟩‘1)
26 s2fv1 13569 . . . . . . 7 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
275, 26syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
2825, 27syl5eq 2667 . . . . 5 (𝜑 → (𝑃‘1) = 𝑌)
29 eqeq12 2634 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝑃‘0) = (𝑃‘1) ↔ 𝑋 = 𝑌))
30 sneq 4158 . . . . . . . 8 ((𝑃‘0) = 𝑋 → {(𝑃‘0)} = {𝑋})
3130adantr 481 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0)} = {𝑋})
3231eqeq2d 2631 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0)} ↔ (𝐼‘(𝐹‘0)) = {𝑋}))
33 preq12 4240 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌})
3433sseq1d 3611 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
3529, 32, 34ifpbi123d 1026 . . . . 5 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3624, 28, 35syl2anc 692 . . . 4 (𝜑 → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3720, 36mpbird 247 . . 3 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
38 c0ex 9978 . . . 4 0 ∈ V
39 oveq1 6611 . . . . . 6 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
40 0p1e1 11076 . . . . . 6 (0 + 1) = 1
4139, 40syl6eq 2671 . . . . 5 (𝑘 = 0 → (𝑘 + 1) = 1)
42 wkslem2 26374 . . . . 5 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4341, 42mpdan 701 . . . 4 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4438, 43ralsn 4193 . . 3 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
4537, 44sylibr 224 . 2 (𝜑 → ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
461fveq2i 6151 . . . . . . 7 (#‘𝐹) = (#‘⟨“𝐽”⟩)
47 s1len 13324 . . . . . . 7 (#‘⟨“𝐽”⟩) = 1
4846, 47eqtri 2643 . . . . . 6 (#‘𝐹) = 1
4948oveq2i 6615 . . . . 5 (0..^(#‘𝐹)) = (0..^1)
50 fzo01 12491 . . . . 5 (0..^1) = {0}
5149, 50eqtri 2643 . . . 4 (0..^(#‘𝐹)) = {0}
5251a1i 11 . . 3 (𝜑 → (0..^(#‘𝐹)) = {0})
5352raleqdv 3133 . 2 (𝜑 → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5445, 53mpbird 247 1 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  if-wif 1011   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  wss 3555  {csn 4148  {cpr 4150  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  ..^cfzo 12406  #chash 13057  ⟨“cs1 13233  ⟨“cs2 13523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530
This theorem is referenced by:  1wlkd  26867
  Copyright terms: Public domain W3C validator