Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2at0mat0 Structured version   Visualization version   GIF version

Theorem 2at0mat0 36541
Description: Special case of 2atmat0 36542 where one atom could be zero. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
2atmatz.j = (join‘𝐾)
2atmatz.m = (meet‘𝐾)
2atmatz.z 0 = (0.‘𝐾)
2atmatz.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2at0mat0 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))

Proof of Theorem 2at0mat0
StepHypRef Expression
1 simpll 763 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
2 simplr1 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑅𝐴)
3 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑆𝐴)
4 simplr3 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝑃 𝑄) ≠ (𝑅 𝑆))
5 simpl1 1183 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
6 hlol 36377 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
75, 6syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
8 simpr1 1186 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
9 simpr2 1187 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
10 eqid 2818 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
11 2atmatz.j . . . . . . . . 9 = (join‘𝐾)
12 2atmatz.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
1310, 11, 12hlatjcl 36383 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
145, 8, 9, 13syl3anc 1363 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
15 simpl3 1185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
16 2atmatz.m . . . . . . . 8 = (meet‘𝐾)
17 2atmatz.z . . . . . . . 8 0 = (0.‘𝐾)
1810, 16, 17, 12meetat2 36313 . . . . . . 7 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
197, 14, 15, 18syl3anc 1363 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
2019adantr 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
21 oveq1 7152 . . . . . . . . . 10 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2211, 12hlatjidm 36385 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
235, 15, 22syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 𝑄) = 𝑄)
2421, 23sylan9eqr 2875 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
2524oveq1d 7160 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑄 (𝑅 𝑆)))
265hllatd 36380 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
2710, 12atbase 36305 . . . . . . . . . . 11 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2815, 27syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
2910, 16latmcom 17673 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3026, 28, 14, 29syl3anc 1363 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3130adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3225, 31eqtrd 2853 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3332eleq1d 2894 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑅 𝑆) 𝑄) ∈ 𝐴))
3432eqeq1d 2820 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑅 𝑆) 𝑄) = 0 ))
3533, 34orbi12d 912 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 )))
3620, 35mpbird 258 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
3710, 11, 12hlatjcl 36383 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3837adantr 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3910, 16, 17, 12meetat2 36313 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆𝐴) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
407, 38, 9, 39syl3anc 1363 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
4140adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
42 oveq1 7152 . . . . . . . . . . 11 (𝑅 = 𝑆 → (𝑅 𝑆) = (𝑆 𝑆))
4311, 12hlatjidm 36385 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑆 𝑆) = 𝑆)
445, 9, 43syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆 𝑆) = 𝑆)
4542, 44sylan9eqr 2875 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (𝑅 𝑆) = 𝑆)
4645oveq2d 7161 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑆))
4746eleq1d 2894 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝐴))
4846eqeq1d 2820 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑆) = 0 ))
4947, 48orbi12d 912 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 )))
5041, 49mpbird 258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
5150adantlr 711 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
52 df-ne 3014 . . . . . . . 8 (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 ↔ ¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 )
53 simpll1 1204 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝐾 ∈ HL)
54 simpll2 1205 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝐴)
55 simpll3 1206 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑄𝐴)
56 simpr1 1186 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝑄)
57 eqid 2818 . . . . . . . . . . . . 13 (LLines‘𝐾) = (LLines‘𝐾)
5811, 12, 57llni2 36528 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
5953, 54, 55, 56, 58syl31anc 1365 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ∈ (LLines‘𝐾))
60 simplr1 1207 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝐴)
61 simplr2 1208 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑆𝐴)
62 simpr2 1187 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝑆)
6311, 12, 57llni2 36528 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
6453, 60, 61, 62, 63syl31anc 1365 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑅 𝑆) ∈ (LLines‘𝐾))
65 simplr3 1209 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ≠ (𝑅 𝑆))
66 simpr3 1188 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )
6716, 17, 12, 572llnmat 36540 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑄) ≠ (𝑅 𝑆) ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
6853, 59, 64, 65, 66, 67syl32anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
69683exp2 1346 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃𝑄 → (𝑅𝑆 → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))))
7069imp31 418 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7152, 70syl5bir 244 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7271orrd 857 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ∨ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7372orcomd 865 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7451, 73pm2.61dane 3101 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7536, 74pm2.61dane 3101 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
761, 2, 3, 4, 75syl13anc 1364 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
77 simpl1 1183 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
7877, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
7937adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
80 simpr1 1186 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
8110, 16, 17, 12meetat2 36313 . . . . 5 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅𝐴) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8278, 79, 80, 81syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8382adantr 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
84 oveq2 7153 . . . . . . 7 (𝑆 = 0 → (𝑅 𝑆) = (𝑅 0 ))
8510, 12atbase 36305 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
8680, 85syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
8710, 11, 17olj01 36241 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 0 ) = 𝑅)
8878, 86, 87syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 0 ) = 𝑅)
8984, 88sylan9eqr 2875 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (𝑅 𝑆) = 𝑅)
9089oveq2d 7161 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
9190eleq1d 2894 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝐴))
9290eqeq1d 2820 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑅) = 0 ))
9391, 92orbi12d 912 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 )))
9483, 93mpbird 258 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
95 simpr2 1187 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆𝐴𝑆 = 0 ))
9676, 94, 95mpjaodan 952 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  Basecbs 16471  joincjn 17542  meetcmee 17543  0.cp0 17635  Latclat 17643  OLcol 36190  Atomscatm 36279  HLchlt 36366  LLinesclln 36507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-lat 17644  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-llines 36514
This theorem is referenced by:  2atmat0  36542  cdlemg31b0a  37711
  Copyright terms: Public domain W3C validator