MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2basgen Structured version   Visualization version   GIF version

Theorem 2basgen 20842
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
2basgen ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))

Proof of Theorem 2basgen
StepHypRef Expression
1 fvex 6239 . . . . 5 (topGen‘𝐵) ∈ V
21ssex 4835 . . . 4 (𝐶 ⊆ (topGen‘𝐵) → 𝐶 ∈ V)
32adantl 481 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ∈ V)
4 simpl 472 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝐶)
5 tgss 20820 . . 3 ((𝐶 ∈ V ∧ 𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
63, 4, 5syl2anc 694 . 2 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
7 simpr 476 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵))
8 ssexg 4837 . . . . 5 ((𝐵𝐶𝐶 ∈ V) → 𝐵 ∈ V)
92, 8sylan2 490 . . . 4 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
10 tgss3 20838 . . . 4 ((𝐶 ∈ V ∧ 𝐵 ∈ V) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
113, 9, 10syl2anc 694 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
127, 11mpbird 247 . 2 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵))
136, 12eqssd 3653 1 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  cfv 5926  topGenctg 16145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-topgen 16151
This theorem is referenced by:  leordtval2  21064  2ndcsb  21300  txbasval  21457  prdsxmslem2  22381  tgioo  22646  tgqioo  22650
  Copyright terms: Public domain W3C validator