MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2clwwlk Structured version   Visualization version   GIF version

Theorem 2clwwlk2clwwlk 28132
Description: An element of the value of operation 𝐶, i.e., a word being a double loop of length 𝑁 on vertex 𝑋, is composed of two closed walks. (Contributed by AV, 28-Apr-2022.) (Proof shortened by AV, 3-Nov-2022.)
Hypothesis
Ref Expression
2clwwlk.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
Assertion
Ref Expression
2clwwlk2clwwlk ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑊   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)   𝑊(𝑣,𝑛)

Proof of Theorem 2clwwlk2clwwlk
StepHypRef Expression
1 uzuzle23 12292 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 2clwwlk.c . . . . . 6 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlkel 28131 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
41, 3sylan2 594 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
5 simpr 487 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘3))
65anim1i 616 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
7 3anass 1091 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) ↔ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
86, 7sylibr 236 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))
9 clwwnonrepclwwnon 28127 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
108, 9syl 17 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
115adantr 483 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
12 simprl 769 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
13 simprr 771 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = 𝑋)
14 isclwwlknon 27873 . . . . . . . . . 10 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
15 simpr 487 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
1615eqcomd 2830 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0))
1714, 16sylbi 219 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0))
1817ad2antrl 726 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑊‘0))
1913, 18eqtrd 2859 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
20 2clwwlk2clwwlklem 28128 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
2111, 12, 19, 20syl3anc 1367 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
22 eqid 2824 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 27816 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁))
24 opeq2 4807 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑊) → ⟨(𝑁 − 2), 𝑁⟩ = ⟨(𝑁 − 2), (♯‘𝑊)⟩)
2524oveq2d 7175 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑊) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩))
2625oveq2d 7175 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑊) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2726eqcoms 2832 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2827ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
29 simpl 485 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ∈ Word (Vtx‘𝐺))
30 fz1ssfz0 13006 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ (0...𝑁)
31 ige3m2fz 12934 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
3230, 31sseldi 3968 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (0...𝑁))
3332adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ (0...𝑁))
3433adantl 484 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...𝑁))
35 oveq2 7167 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = 𝑁 → (0...(♯‘𝑊)) = (0...𝑁))
3635eleq2d 2901 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = 𝑁 → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3736ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3834, 37mpbird 259 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...(♯‘𝑊)))
39 pfxcctswrd 14075 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 2) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4029, 38, 39syl2an2r 683 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4128, 40eqtrd 2859 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4223, 41sylan 582 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4342ex 415 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4443adantr 483 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4514, 44sylbi 219 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4645adantr 483 . . . . . . . 8 ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4746impcom 410 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4847eqcomd 2830 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))
4910, 21, 483jca 1124 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))))
5049ex 415 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
514, 50sylbid 242 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
52 rspceov 7206 . . 3 (((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏))
5351, 52syl6 35 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
54 eluzelcn 12258 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
55 2cnd 11718 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
5654, 55npcand 11004 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
5756adantl 484 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑁 − 2) + 2) = 𝑁)
5857oveq2d 7175 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
5958eleq2d 2901 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) ↔ (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
6059biimpd 231 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
61 clwwlknonccat 27878 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)))
6260, 61impel 508 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
63 isclwwlknon 27873 . . . . . . . 8 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ↔ (𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋))
64 clwwlkn2 27825 . . . . . . . . . 10 (𝑏 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)))
65 isclwwlknon 27873 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
6622clwwlknbp 27816 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)))
67 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑎 ∈ Word (Vtx‘𝐺))
68 simprr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑏 ∈ Word (Vtx‘𝐺))
69 2nn 11713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ
70 lbfzo0 13080 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
7169, 70mpbir 233 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ (0..^2)
72 oveq2 7167 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑏) = 2 → (0..^(♯‘𝑏)) = (0..^2))
7371, 72eleqtrrid 2923 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑏) = 2 → 0 ∈ (0..^(♯‘𝑏)))
7473ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 0 ∈ (0..^(♯‘𝑏)))
7567, 68, 743jca 1124 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7675adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7776adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
78 ccatval3 13936 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
80 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (♯‘𝑎) = (𝑁 − 2))
8180oveq2d 7175 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8281adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8354, 55subcld 11000 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℂ)
8483addid2d 10844 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8584adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8682, 85sylan9eq 2879 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (0 + (♯‘𝑎)) = (𝑁 − 2))
8786eqcomd 2830 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) = (0 + (♯‘𝑎)))
8887fveq2d 6677 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))))
89 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (𝑏‘0) = 𝑋)
9089eqcomd 2830 . . . . . . . . . . . . . . . . . . . 20 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → 𝑋 = (𝑏‘0))
9190ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋 = (𝑏‘0))
9279, 88, 913eqtr4d 2869 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
9392exp53 450 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ Word (Vtx‘𝐺) → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → ((♯‘𝑎) = (𝑁 − 2) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9493com24 95 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Word (Vtx‘𝐺) → ((♯‘𝑎) = (𝑁 − 2) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9594imp 409 . . . . . . . . . . . . . . 15 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9666, 95syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9796adantr 483 . . . . . . . . . . . . 13 ((𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9865, 97sylbi 219 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9998com13 88 . . . . . . . . . . 11 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
100993adant3 1128 . . . . . . . . . 10 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
10164, 100sylbi 219 . . . . . . . . 9 (𝑏 ∈ (2 ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
102101imp 409 . . . . . . . 8 ((𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10363, 102sylbi 219 . . . . . . 7 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
104103impcom 410 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))
105104impcom 410 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
10622clwwlkel 28131 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
1071, 106sylan2 594 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
108107adantr 483 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10962, 105, 108mpbir2and 711 . . . 4 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁))
110 eleq1 2903 . . . 4 (𝑊 = (𝑎 ++ 𝑏) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁)))
111109, 110syl5ibrcom 249 . . 3 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
112111rexlimdvva 3297 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
11353, 112impbid 214 1 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142  {crab 3145  {cpr 4572  cop 4576  cfv 6358  (class class class)co 7159  cmpo 7161  0cc0 10540  1c1 10541   + caddc 10543  cmin 10873  cn 11641  2c2 11695  3c3 11696  cuz 12246  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864   ++ cconcat 13925   substr csubstr 14005   prefix cpfx 14035  Vtxcvtx 26784  Edgcedg 26835   ClWWalksN cclwwlkn 27805  ClWWalksNOncclwwlknon 27869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-s2 14213  df-wwlks 27611  df-wwlksn 27612  df-clwwlk 27763  df-clwwlkn 27806  df-clwwlknon 27870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator