MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cshw Structured version   Visualization version   GIF version

Theorem 2cshw 14169
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.)
Assertion
Ref Expression
2cshw ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))

Proof of Theorem 2cshw
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 cshwlen 14155 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
213adant3 1128 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
3 cshwcl 14154 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
4 cshwlen 14155 . . . . 5 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
53, 4sylan 582 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
653adant2 1127 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
7 simp1 1132 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
8 zaddcl 12016 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
983adant1 1126 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
10 cshwlen 14155 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
117, 9, 10syl2anc 586 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
122, 6, 113eqtr4d 2866 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))))
136, 2eqtrd 2856 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘𝑊))
1413oveq2d 7166 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) = (0..^(♯‘𝑊)))
1514eleq2d 2898 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
1633ad2ant1 1129 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
1716adantr 483 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
18 simpl3 1189 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
192oveq2d 7166 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘(𝑊 cyclShift 𝑀))) = (0..^(♯‘𝑊)))
2019eleq2d 2898 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
2120biimpar 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))))
22 cshwidxmod 14159 . . . . . . 7 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀)))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
2317, 18, 21, 22syl3anc 1367 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
24 simpl1 1187 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
25 simpl2 1188 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑀 ∈ ℤ)
26 elfzo0 13072 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
27 nn0z 11999 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
2827ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℤ)
29 simpr3 1192 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
3028, 29zaddcld 12085 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℤ)
31 simplr 767 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
3230, 31jca 514 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
3332ex 415 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
34333adant3 1128 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3526, 34sylbi 219 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3635impcom 410 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
37 zmodfzo 13256 . . . . . . . . 9 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3836, 37syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
391oveq2d 7166 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
4039eleq1d 2897 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
41403adant3 1128 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4241adantr 483 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4338, 42mpbird 259 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)))
44 cshwidxmod 14159 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
4524, 25, 43, 44syl3anc 1367 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
46 nn0re 11900 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4746ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℝ)
48 zre 11979 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4948ad2antll 727 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
5047, 49readdcld 10664 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℝ)
51 zre 11979 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5251ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
53 nnrp 12394 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
5453ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
55 modaddmod 13272 . . . . . . . . . . . . . . 15 (((𝑖 + 𝑁) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
5650, 52, 54, 55syl3anc 1367 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
57 nn0cn 11901 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
5857ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℂ)
59 zcn 11980 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6059ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
61 zcn 11980 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6261ad2antll 727 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
63 add32r 10853 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6458, 60, 62, 63syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6564oveq1d 7165 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
6656, 65eqtr4d 2859 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
6766ex 415 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
68673adant3 1128 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
6926, 68sylbi 219 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
7069impcom 410 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
71703adantl1 1162 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
7271fveq2d 6668 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
732adantr 483 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
7473oveq2d 7166 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
7574oveq1d 7165 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) = (((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀))
7675fvoveq1d 7172 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))))
779adantr 483 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑀 + 𝑁) ∈ ℤ)
78 simpr 487 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
79 cshwidxmod 14159 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8024, 77, 78, 79syl3anc 1367 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8172, 76, 803eqtr4d 2866 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8223, 45, 813eqtrd 2860 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8382ex 415 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8415, 83sylbid 242 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8584ralrimiv 3181 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
86 cshwcl 14154 . . . . 5 ((𝑊 cyclShift 𝑀) ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
873, 86syl 17 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
88 cshwcl 14154 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉)
89 eqwrd 13903 . . . 4 ((((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9087, 88, 89syl2anc 586 . . 3 (𝑊 ∈ Word 𝑉 → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
91903ad2ant1 1129 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9212, 85, 91mpbir2and 711 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   + caddc 10534   < clt 10669  cn 11632  0cn0 11891  cz 11975  +crp 12383  ..^cfzo 13027   mod cmo 13231  chash 13684  Word cword 13855   cyclShift ccsh 14144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-hash 13685  df-word 13856  df-concat 13917  df-substr 13997  df-pfx 14027  df-csh 14145
This theorem is referenced by:  2cshwid  14170  2cshwcom  14172  cshweqdif2  14175  2cshwcshw  14181  cshwcshid  14183  cshwcsh2id  14184  cshwshashlem2  16424
  Copyright terms: Public domain W3C validator