MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2efiatan Structured version   Visualization version   GIF version

Theorem 2efiatan 25423
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
2efiatan (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))

Proof of Theorem 2efiatan
StepHypRef Expression
1 atanval 25389 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 7161 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 2cn 11700 . . . . . 6 2 ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5 ax-icn 10584 . . . . . 6 i ∈ ℂ
65a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
7 atancl 25386 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
84, 6, 7mulassd 10652 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
9 halfcl 11850 . . . . . . . . . 10 (i ∈ ℂ → (i / 2) ∈ ℂ)
105, 9ax-mp 5 . . . . . . . . 9 (i / 2) ∈ ℂ
113, 5, 10mulassi 10640 . . . . . . . 8 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
123, 5, 10mul12i 10823 . . . . . . . 8 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
13 2ne0 11729 . . . . . . . . . . 11 2 ≠ 0
145, 3, 13divcan2i 11371 . . . . . . . . . 10 (2 · (i / 2)) = i
1514oveq2i 7156 . . . . . . . . 9 (i · (2 · (i / 2))) = (i · i)
16 ixi 11257 . . . . . . . . 9 (i · i) = -1
1715, 16eqtri 2841 . . . . . . . 8 (i · (2 · (i / 2))) = -1
1811, 12, 173eqtri 2845 . . . . . . 7 ((2 · i) · (i / 2)) = -1
1918oveq1i 7155 . . . . . 6 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
20 ax-1cn 10583 . . . . . . . . . 10 1 ∈ ℂ
21 atandm2 25382 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2221simp1bi 1137 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
23 mulcl 10609 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
245, 22, 23sylancr 587 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
25 subcl 10873 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2620, 24, 25sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
2721simp2bi 1138 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
2826, 27logcld 25081 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
29 addcl 10607 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3020, 24, 29sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
3121simp3bi 1139 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3230, 31logcld 25081 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3328, 32subcld 10985 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
3433mulm1d 11080 . . . . . 6 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3519, 34syl5eq 2865 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
36 2mulicn 11848 . . . . . . 7 (2 · i) ∈ ℂ
3736a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
3810a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
3937, 38, 33mulassd 10652 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4028, 32negsubdi2d 11001 . . . . 5 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4135, 39, 403eqtr3d 2861 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
422, 8, 413eqtr3d 2861 . . 3 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4342fveq2d 6667 . 2 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
44 efsub 15441 . . 3 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
4532, 28, 44syl2anc 584 . 2 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
46 eflog 25087 . . . . 5 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
4730, 31, 46syl2anc 584 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
48 eflog 25087 . . . . 5 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
4926, 27, 48syl2anc 584 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
5047, 49oveq12d 7163 . . 3 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
51 negsub 10922 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
525, 22, 51sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
536mulid1d 10646 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 1) = i)
5416oveq1i 7155 . . . . . . . . 9 ((i · i) · 𝐴) = (-1 · 𝐴)
556, 6, 22mulassd 10652 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((i · i) · 𝐴) = (i · (i · 𝐴)))
5622mulm1d 11080 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-1 · 𝐴) = -𝐴)
5754, 55, 563eqtr3a 2877 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (i · 𝐴)) = -𝐴)
5853, 57oveq12d 7163 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = (i + -𝐴))
596, 22, 6pnpcan2d 11023 . . . . . . 7 (𝐴 ∈ dom arctan → ((i + i) − (𝐴 + i)) = (i − 𝐴))
6052, 58, 593eqtr4d 2863 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = ((i + i) − (𝐴 + i)))
6120a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
626, 61, 24adddid 10653 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((i · 1) + (i · (i · 𝐴))))
6362timesd 11868 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) = (i + i))
6463oveq1d 7160 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) − (𝐴 + i)) = ((i + i) − (𝐴 + i)))
6560, 62, 643eqtr4d 2863 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((2 · i) − (𝐴 + i)))
666, 61, 24subdid 11084 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = ((i · 1) − (i · (i · 𝐴))))
6753, 57oveq12d 7163 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i − -𝐴))
68 subneg 10923 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i − -𝐴) = (i + 𝐴))
695, 22, 68sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (i − -𝐴) = (i + 𝐴))
7067, 69eqtrd 2853 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i + 𝐴))
71 addcom 10814 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + 𝐴) = (𝐴 + i))
725, 22, 71sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → (i + 𝐴) = (𝐴 + i))
7366, 70, 723eqtrd 2857 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = (𝐴 + i))
7465, 73oveq12d 7163 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = (((2 · i) − (𝐴 + i)) / (𝐴 + i)))
75 ine0 11063 . . . . . 6 i ≠ 0
7675a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ≠ 0)
7730, 26, 6, 27, 76divcan5d 11430 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
78 addcl 10607 . . . . . 6 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
7922, 5, 78sylancl 586 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
80 subneg 10923 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
8122, 5, 80sylancl 586 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
82 atandm 25381 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
8382simp2bi 1138 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
84 negicn 10875 . . . . . . . 8 -i ∈ ℂ
85 subeq0 10900 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
8685necon3bid 3057 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8722, 84, 86sylancl 586 . . . . . . 7 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8883, 87mpbird 258 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
8981, 88eqnetrrd 3081 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
9037, 79, 79, 89divsubdird 11443 . . . 4 (𝐴 ∈ dom arctan → (((2 · i) − (𝐴 + i)) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9174, 77, 903eqtr3d 2861 . . 3 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) / (1 − (i · 𝐴))) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9279, 89dividd 11402 . . . 4 (𝐴 ∈ dom arctan → ((𝐴 + i) / (𝐴 + i)) = 1)
9392oveq2d 7161 . . 3 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 1))
9450, 91, 933eqtrd 2857 . 2 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = (((2 · i) / (𝐴 + i)) − 1))
9543, 45, 943eqtrd 2857 1 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  dom cdm 5548  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526  ici 10527   + caddc 10528   · cmul 10530  cmin 10858  -cneg 10859   / cdiv 11285  2c2 11680  expce 15403  logclog 25065  arctancatan 25369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-atan 25372
This theorem is referenced by:  tanatan  25424
  Copyright terms: Public domain W3C validator