![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eu4 | Structured version Visualization version GIF version |
Description: This theorem provides us with a definition of double existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"). Naively one might think (incorrectly) that it could be defined by ∃!𝑥∃!𝑦𝜑. See 2eu1 2582 for a condition under which the naive definition holds and 2exeu 2578 for a one-way implication. See 2eu5 2586 and 2eu8 2589 for alternate definitions. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 14-Sep-2019.) |
Ref | Expression |
---|---|
2eu4 | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2524 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
2 | eu5 2524 | . . . 4 ⊢ (∃!𝑦∃𝑥𝜑 ↔ (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑)) | |
3 | excom 2082 | . . . . 5 ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) | |
4 | 3 | anbi1i 731 | . . . 4 ⊢ ((∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) |
5 | 2, 4 | bitri 264 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) |
6 | 1, 5 | anbi12i 733 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) ∧ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑))) |
7 | anandi 888 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ (∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) ↔ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) ∧ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑))) | |
8 | 2mo2 2579 | . . 3 ⊢ ((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
9 | 8 | anbi2i 730 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ (∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
10 | 6, 7, 9 | 3bitr2i 288 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∃wex 1744 ∃!weu 2498 ∃*wmo 2499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 df-eu 2502 df-mo 2503 |
This theorem is referenced by: 2eu5 2586 2eu6 2587 |
Copyright terms: Public domain | W3C validator |