MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu8 Structured version   Visualization version   GIF version

Theorem 2eu8 2745
Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥∃!𝑦 using 2eu7 2744. Usage of this theorem is discouraged because it depends on ax-13 2389. (Contributed by NM, 20-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
2eu8 (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑))

Proof of Theorem 2eu8
StepHypRef Expression
1 2eu2 2737 . . 3 (∃!𝑥𝑦𝜑 → (∃!𝑦∃!𝑥𝜑 ↔ ∃!𝑦𝑥𝜑))
21pm5.32i 577 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑))
3 nfeu1 2673 . . . . 5 𝑥∃!𝑥𝜑
43nfeu 2679 . . . 4 𝑥∃!𝑦∃!𝑥𝜑
54euan 2705 . . 3 (∃!𝑥(∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃!𝑥𝑦𝜑))
6 ancom 463 . . . . . 6 ((∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑥𝜑))
76eubii 2669 . . . . 5 (∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃!𝑥𝜑))
8 nfe1 2153 . . . . . 6 𝑦𝑦𝜑
98euan 2705 . . . . 5 (∃!𝑦(∃𝑦𝜑 ∧ ∃!𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑))
10 ancom 463 . . . . 5 ((∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑))
117, 9, 103bitri 299 . . . 4 (∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑))
1211eubii 2669 . . 3 (∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑))
13 ancom 463 . . 3 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃!𝑥𝑦𝜑))
145, 12, 133bitr4ri 306 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑))
15 2eu7 2744 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑))
162, 14, 153bitr3ri 304 1 (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wex 1779  ∃!weu 2652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-10 2144  ax-11 2160  ax-12 2176  ax-13 2389
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator