Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2euex Structured version   Visualization version   GIF version

Theorem 2euex 2573
 Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)

Proof of Theorem 2euex
StepHypRef Expression
1 eu5 2524 . 2 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
2 excom 2082 . . . 4 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
3 nfe1 2067 . . . . . 6 𝑦𝑦𝜑
43nfmo 2515 . . . . 5 𝑦∃*𝑥𝑦𝜑
5 19.8a 2090 . . . . . . 7 (𝜑 → ∃𝑦𝜑)
65moimi 2549 . . . . . 6 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
7 df-mo 2503 . . . . . 6 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
86, 7sylib 208 . . . . 5 (∃*𝑥𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
94, 8eximd 2123 . . . 4 (∃*𝑥𝑦𝜑 → (∃𝑦𝑥𝜑 → ∃𝑦∃!𝑥𝜑))
102, 9syl5bi 232 . . 3 (∃*𝑥𝑦𝜑 → (∃𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑))
1110impcom 445 . 2 ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → ∃𝑦∃!𝑥𝜑)
121, 11sylbi 207 1 (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1744  ∃!weu 2498  ∃*wmo 2499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-eu 2502  df-mo 2503 This theorem is referenced by:  2exeu  2578
 Copyright terms: Public domain W3C validator