Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2expltfac Structured version   Visualization version   GIF version

Theorem 2expltfac 15846
 Description: The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))

Proof of Theorem 2expltfac
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . 4 (𝑥 = 4 → (2↑𝑥) = (2↑4))
2 2exp4 15841 . . . 4 (2↑4) = 16
31, 2syl6eq 2701 . . 3 (𝑥 = 4 → (2↑𝑥) = 16)
4 fveq2 6229 . . . 4 (𝑥 = 4 → (!‘𝑥) = (!‘4))
5 fac4 13108 . . . 4 (!‘4) = 24
64, 5syl6eq 2701 . . 3 (𝑥 = 4 → (!‘𝑥) = 24)
73, 6breq12d 4698 . 2 (𝑥 = 4 → ((2↑𝑥) < (!‘𝑥) ↔ 16 < 24))
8 oveq2 6698 . . 3 (𝑥 = 𝑛 → (2↑𝑥) = (2↑𝑛))
9 fveq2 6229 . . 3 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
108, 9breq12d 4698 . 2 (𝑥 = 𝑛 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑛) < (!‘𝑛)))
11 oveq2 6698 . . 3 (𝑥 = (𝑛 + 1) → (2↑𝑥) = (2↑(𝑛 + 1)))
12 fveq2 6229 . . 3 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
1311, 12breq12d 4698 . 2 (𝑥 = (𝑛 + 1) → ((2↑𝑥) < (!‘𝑥) ↔ (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
14 oveq2 6698 . . 3 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
15 fveq2 6229 . . 3 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1614, 15breq12d 4698 . 2 (𝑥 = 𝑁 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑁) < (!‘𝑁)))
17 1nn0 11346 . . . 4 1 ∈ ℕ0
18 2nn0 11347 . . . 4 2 ∈ ℕ0
19 6nn0 11351 . . . 4 6 ∈ ℕ0
20 4nn0 11349 . . . 4 4 ∈ ℕ0
21 6lt10 11714 . . . 4 6 < 10
22 1lt2 11232 . . . 4 1 < 2
2317, 18, 19, 20, 21, 22decltc 11570 . . 3 16 < 24
2423a1i 11 . 2 (4 ∈ ℤ → 16 < 24)
25 2nn 11223 . . . . . . . . 9 2 ∈ ℕ
2625a1i 11 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℕ)
27 4nn 11225 . . . . . . . . . 10 4 ∈ ℕ
28 simpl 472 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ (ℤ‘4))
29 eluznn 11796 . . . . . . . . . 10 ((4 ∈ ℕ ∧ 𝑛 ∈ (ℤ‘4)) → 𝑛 ∈ ℕ)
3027, 28, 29sylancr 696 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ)
3130nnnn0d 11389 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ0)
3226, 31nnexpcld 13070 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℕ)
3332nnred 11073 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℝ)
34 2re 11128 . . . . . . 7 2 ∈ ℝ
3534a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ)
3633, 35remulcld 10108 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) ∈ ℝ)
3731faccld 13111 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ)
3837nnred 11073 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℝ)
3938, 35remulcld 10108 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ∈ ℝ)
4030nnred 11073 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℝ)
41 1red 10093 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ∈ ℝ)
4240, 41readdcld 10107 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (𝑛 + 1) ∈ ℝ)
4338, 42remulcld 10108 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · (𝑛 + 1)) ∈ ℝ)
44 2rp 11875 . . . . . . 7 2 ∈ ℝ+
4544a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ+)
46 simpr 476 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) < (!‘𝑛))
4733, 38, 45, 46ltmul1dd 11965 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · 2))
4837nnnn0d 11389 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ0)
4948nn0ge0d 11392 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 0 ≤ (!‘𝑛))
50 df-2 11117 . . . . . . 7 2 = (1 + 1)
5130nnge1d 11101 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ≤ 𝑛)
5241, 40, 41, 51leadd1dd 10679 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (1 + 1) ≤ (𝑛 + 1))
5350, 52syl5eqbr 4720 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ≤ (𝑛 + 1))
5435, 42, 38, 49, 53lemul2ad 11002 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ≤ ((!‘𝑛) · (𝑛 + 1)))
5536, 39, 43, 47, 54ltletrd 10235 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · (𝑛 + 1)))
56 2cnd 11131 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℂ)
5756, 31expp1d 13049 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) = ((2↑𝑛) · 2))
58 facp1 13105 . . . . 5 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5931, 58syl 17 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
6055, 57, 593brtr4d 4717 . . 3 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1)))
6160ex 449 . 2 (𝑛 ∈ (ℤ‘4) → ((2↑𝑛) < (!‘𝑛) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
627, 10, 13, 16, 24, 61uzind4 11784 1 (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113  ℕcn 11058  2c2 11108  4c4 11110  6c6 11112  ℕ0cn0 11330  ℤcz 11415  ;cdc 11531  ℤ≥cuz 11725  ℝ+crp 11870  ↑cexp 12900  !cfa 13100 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-fac 13101 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator