MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlval Structured version   Visualization version   GIF version

Theorem 2idlval 20009
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i 𝐼 = (LIdeal‘𝑅)
2idlval.o 𝑂 = (oppr𝑅)
2idlval.j 𝐽 = (LIdeal‘𝑂)
2idlval.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlval 𝑇 = (𝐼𝐽)

Proof of Theorem 2idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2 𝑇 = (2Ideal‘𝑅)
2 fveq2 6673 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
3 2idlval.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
42, 3syl6eqr 2877 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼)
5 fveq2 6673 . . . . . . . 8 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
6 2idlval.o . . . . . . . 8 𝑂 = (oppr𝑅)
75, 6syl6eqr 2877 . . . . . . 7 (𝑟 = 𝑅 → (oppr𝑟) = 𝑂)
87fveq2d 6677 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = (LIdeal‘𝑂))
9 2idlval.j . . . . . 6 𝐽 = (LIdeal‘𝑂)
108, 9syl6eqr 2877 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = 𝐽)
114, 10ineq12d 4193 . . . 4 (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))) = (𝐼𝐽))
12 df-2idl 20008 . . . 4 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
133fvexi 6687 . . . . 5 𝐼 ∈ V
1413inex1 5224 . . . 4 (𝐼𝐽) ∈ V
1511, 12, 14fvmpt 6771 . . 3 (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
16 fvprc 6666 . . . 4 𝑅 ∈ V → (2Ideal‘𝑅) = ∅)
17 inss1 4208 . . . . 5 (𝐼𝐽) ⊆ 𝐼
18 fvprc 6666 . . . . . 6 𝑅 ∈ V → (LIdeal‘𝑅) = ∅)
193, 18syl5eq 2871 . . . . 5 𝑅 ∈ V → 𝐼 = ∅)
20 sseq0 4356 . . . . 5 (((𝐼𝐽) ⊆ 𝐼𝐼 = ∅) → (𝐼𝐽) = ∅)
2117, 19, 20sylancr 589 . . . 4 𝑅 ∈ V → (𝐼𝐽) = ∅)
2216, 21eqtr4d 2862 . . 3 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
2315, 22pm2.61i 184 . 2 (2Ideal‘𝑅) = (𝐼𝐽)
241, 23eqtri 2847 1 𝑇 = (𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1536  wcel 2113  Vcvv 3497  cin 3938  wss 3939  c0 4294  cfv 6358  opprcoppr 19375  LIdealclidl 19945  2Idealc2idl 20007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-2idl 20008
This theorem is referenced by:  2idlcpbl  20010  qus1  20011  qusrhm  20013  crng2idl  20015
  Copyright terms: Public domain W3C validator