Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2leaddle2 Structured version   Visualization version   GIF version

Theorem 2leaddle2 43505
Description: If two real numbers are less than a third real number, the sum of the real numbers is less than twice the third real number. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
2leaddle2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶)))

Proof of Theorem 2leaddle2
StepHypRef Expression
1 readdcl 10622 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
213adant3 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
3 readdcl 10622 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ∈ ℝ)
43anidms 569 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 + 𝐶) ∈ ℝ)
543ad2ant3 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ∈ ℝ)
6 2re 11714 . . . . . . 7 2 ∈ ℝ
7 remulcl 10624 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
86, 7mpan 688 . . . . . 6 (𝐶 ∈ ℝ → (2 · 𝐶) ∈ ℝ)
983ad2ant3 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
102, 5, 93jca 1124 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ))
1110adantr 483 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ))
12 id 22 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13123adant3 1128 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
14 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ)
1514, 14jca 514 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
16153ad2ant3 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
1713, 16jca 514 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
1817adantr 483 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
19 simpr 487 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 < 𝐶𝐵 < 𝐶))
20 lt2add 11127 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (𝐶 + 𝐶)))
2118, 19, 20sylc 65 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) < (𝐶 + 𝐶))
22 recn 10629 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
23222timesd 11883 . . . . . . 7 (𝐶 ∈ ℝ → (2 · 𝐶) = (𝐶 + 𝐶))
248leidd 11208 . . . . . . 7 (𝐶 ∈ ℝ → (2 · 𝐶) ≤ (2 · 𝐶))
2523, 24eqbrtrrd 5092 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 + 𝐶) ≤ (2 · 𝐶))
26253ad2ant3 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ≤ (2 · 𝐶))
2726adantr 483 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐶 + 𝐶) ≤ (2 · 𝐶))
2821, 27jca 514 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) < (𝐶 + 𝐶) ∧ (𝐶 + 𝐶) ≤ (2 · 𝐶)))
29 ltletr 10734 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (((𝐴 + 𝐵) < (𝐶 + 𝐶) ∧ (𝐶 + 𝐶) ≤ (2 · 𝐶)) → (𝐴 + 𝐵) < (2 · 𝐶)))
3011, 28, 29sylc 65 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) < (2 · 𝐶))
3130ex 415 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114   class class class wbr 5068  (class class class)co 7158  cr 10538   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  2c2 11695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-2 11703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator