MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgs Structured version   Visualization version   GIF version

Theorem 2lgs 24876
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 24783) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))

Proof of Theorem 2lgs
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 15190 . 2 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
2 2lgslem4 24875 . . . . . 6 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
32a1i 11 . . . . 5 (𝑃 = 2 → ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}))
4 oveq2 6534 . . . . . 6 (𝑃 = 2 → (2 /L 𝑃) = (2 /L 2))
54eqeq1d 2611 . . . . 5 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (2 /L 2) = 1))
6 oveq1 6533 . . . . . 6 (𝑃 = 2 → (𝑃 mod 8) = (2 mod 8))
76eleq1d 2671 . . . . 5 (𝑃 = 2 → ((𝑃 mod 8) ∈ {1, 7} ↔ (2 mod 8) ∈ {1, 7}))
83, 5, 73bitr4d 298 . . . 4 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
98a1d 25 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
10 2prm 15191 . . . . . . . . . 10 2 ∈ ℙ
11 prmnn 15174 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 dvdsprime 15186 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
1310, 11, 12sylancr 693 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
14 z2even 14892 . . . . . . . . . . . . 13 2 ∥ 2
15 breq2 4581 . . . . . . . . . . . . 13 (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2))
1614, 15mpbiri 246 . . . . . . . . . . . 12 (𝑃 = 2 → 2 ∥ 𝑃)
1716a1d 25 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
18 eleq1 2675 . . . . . . . . . . . 12 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
19 1nprm 15178 . . . . . . . . . . . . 13 ¬ 1 ∈ ℙ
2019pm2.21i 114 . . . . . . . . . . . 12 (1 ∈ ℙ → 2 ∥ 𝑃)
2118, 20syl6bi 241 . . . . . . . . . . 11 (𝑃 = 1 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2217, 21jaoi 392 . . . . . . . . . 10 ((𝑃 = 2 ∨ 𝑃 = 1) → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2322com12 32 . . . . . . . . 9 (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ 𝑃 = 1) → 2 ∥ 𝑃))
2413, 23sylbid 228 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∥ 2 → 2 ∥ 𝑃))
2524con3dimp 455 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∥ 2)
26 2z 11244 . . . . . . 7 2 ∈ ℤ
2725, 26jctil 557 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2))
28 2lgslem1 24863 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2928eqcomd 2615 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}))
30 nnoddn2prmb 15304 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃))
3130biimpri 216 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2}))
32313ad2ant1 1074 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → 𝑃 ∈ (ℙ ∖ {2}))
33 eqid 2609 . . . . . . . 8 ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2)
34 eqid 2609 . . . . . . . 8 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
35 eqid 2609 . . . . . . . 8 (⌊‘(𝑃 / 4)) = (⌊‘(𝑃 / 4))
36 eqid 2609 . . . . . . . 8 (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
3732, 33, 34, 35, 36gausslemma2d 24843 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → (2 /L 𝑃) = (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
3837eqeq1d 2611 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
3927, 29, 38mpd3an23 1417 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
40362lgslem2 24864 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ)
41 m1exp1 14879 . . . . . 6 ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
4240, 41syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
43 2nn 11034 . . . . . . 7 2 ∈ ℕ
44 dvdsval3 14773 . . . . . . 7 ((2 ∈ ℕ ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
4543, 40, 44sylancr 693 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
46362lgslem3 24873 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4711, 46sylan 486 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4847eqeq1d 2611 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0 ↔ if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0))
49 ax-1 6 . . . . . . . . 9 ((𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
50 iffalse 4044 . . . . . . . . . . 11 (¬ (𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
5150eqeq1d 2611 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ 1 = 0))
52 ax-1ne0 9861 . . . . . . . . . . 11 1 ≠ 0
53 eqneqall 2792 . . . . . . . . . . 11 (1 = 0 → (1 ≠ 0 → (𝑃 mod 8) ∈ {1, 7}))
5452, 53mpi 20 . . . . . . . . . 10 (1 = 0 → (𝑃 mod 8) ∈ {1, 7})
5551, 54syl6bi 241 . . . . . . . . 9 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
5649, 55pm2.61i 174 . . . . . . . 8 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7})
57 iftrue 4041 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
5856, 57impbii 197 . . . . . . 7 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7})
5958a1i 11 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7}))
6045, 48, 593bitrd 292 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ (𝑃 mod 8) ∈ {1, 7}))
6139, 42, 603bitrd 292 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
6261expcom 449 . . 3 (¬ 2 ∥ 𝑃 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
639, 62jaoi 392 . 2 ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
641, 63mpcom 37 1 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wrex 2896  {crab 2899  cdif 3536  ifcif 4035  {csn 4124  {cpr 4126   class class class wbr 4577  cmpt 4637  cfv 5789  (class class class)co 6526  0cc0 9792  1c1 9793   · cmul 9797   < clt 9930  cmin 10117  -cneg 10118   / cdiv 10535  cn 10869  2c2 10919  4c4 10921  7c7 10924  8c8 10925  cz 11212  ...cfz 12154  cfl 12410   mod cmo 12487  cexp 12679  #chash 12936  cdvds 14769  cprime 15171   /L clgs 24763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-n0 11142  df-z 11213  df-uz 11522  df-q 11623  df-rp 11667  df-ioo 12008  df-ico 12010  df-fz 12155  df-fzo 12292  df-fl 12412  df-mod 12488  df-seq 12621  df-exp 12680  df-fac 12880  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-prod 14423  df-dvds 14770  df-gcd 15003  df-prm 15172  df-phi 15257  df-pc 15328  df-lgs 24764
This theorem is referenced by:  2lgsoddprm  24885  fmtnoprmfac2lem1  39800  sfprmdvdsmersenne  39842
  Copyright terms: Public domain W3C validator