MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a Structured version   Visualization version   GIF version

Theorem 2lgslem1a 25894
Description: Lemma 1 for 2lgslem1 25897. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16006 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 11943 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad2antrr 722 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ0)
4 4nn 11708 . . . . . . . 8 4 ∈ ℕ
53, 4jctir 521 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
6 fldivnn0 13180 . . . . . . 7 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
7 nn0p1nn 11924 . . . . . . 7 ((⌊‘(𝑃 / 4)) ∈ ℕ0 → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
85, 6, 73syl 18 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
9 elnnuz 12270 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
108, 9sylib 219 . . . . 5 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
11 fzss1 12934 . . . . 5 (((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)))
12 rexss 4035 . . . . 5 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
1310, 11, 123syl 18 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
14 ancom 461 . . . . . 6 ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))))
152, 4jctir 521 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
1615, 6syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℕ0)
1716nn0zd 12073 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
1817ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (⌊‘(𝑃 / 4)) ∈ ℤ)
19 elfzelz 12896 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
20 zltp1le 12020 . . . . . . . . . . . . . 14 (((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2118, 19, 20syl2an 595 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2221bicomd 224 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖 ↔ (⌊‘(𝑃 / 4)) < 𝑖))
2322anbi1d 629 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2419adantl 482 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ∈ ℤ)
2517peano2zd 12078 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2625adantr 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2726ad2antrr 722 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
28 prmz 16007 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 oddm1d2 15697 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3130biimpa 477 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
3231ad2antrr 722 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℤ)
33 elfz 12886 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3424, 27, 32, 33syl3anc 1363 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
35 elfzle2 12899 . . . . . . . . . . . . 13 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ≤ ((𝑃 − 1) / 2))
3635adantl 482 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ≤ ((𝑃 − 1) / 2))
3736biantrud 532 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3823, 34, 373bitr4d 312 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (⌊‘(𝑃 / 4)) < 𝑖))
3928ad2antrr 722 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
40 2lgslem1a2 25893 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4139, 19, 40syl2an 595 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4238, 41bitrd 280 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑖 · 2)))
43 2lgslem1a1 25892 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
441, 43sylan 580 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
4544adantr 481 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
46 oveq1 7152 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 · 2) = (𝑖 · 2))
4746oveq1d 7160 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝑘 · 2) mod 𝑃) = ((𝑖 · 2) mod 𝑃))
4846, 47eqeq12d 2834 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ↔ (𝑖 · 2) = ((𝑖 · 2) mod 𝑃)))
4948rspccva 3619 . . . . . . . . . . 11 ((∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5045, 49sylan 580 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5150breq2d 5069 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 / 2) < (𝑖 · 2) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
5242, 51bitrd 280 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
53 oveq1 7152 . . . . . . . . . 10 (𝑥 = (𝑖 · 2) → (𝑥 mod 𝑃) = ((𝑖 · 2) mod 𝑃))
5453eqcomd 2824 . . . . . . . . 9 (𝑥 = (𝑖 · 2) → ((𝑖 · 2) mod 𝑃) = (𝑥 mod 𝑃))
5554breq2d 5069 . . . . . . . 8 (𝑥 = (𝑖 · 2) → ((𝑃 / 2) < ((𝑖 · 2) mod 𝑃) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5652, 55sylan9bb 510 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) ∧ 𝑥 = (𝑖 · 2)) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5756pm5.32da 579 . . . . . 6 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5814, 57syl5bb 284 . . . . 5 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5958rexbidva 3293 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6013, 59bitrd 280 . . 3 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6160bicomd 224 . 2 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃)) ↔ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)))
6261rabbidva 3476 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {crab 3139  wss 3933   class class class wbr 5057  cfv 6348  (class class class)co 7145  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  4c4 11682  0cn0 11885  cz 11969  cuz 12231  ...cfz 12880  cfl 13148   mod cmo 13225  cdvds 15595  cprime 16003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fl 13150  df-mod 13226  df-dvds 15596  df-prm 16004
This theorem is referenced by:  2lgslem1  25897
  Copyright terms: Public domain W3C validator