MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a2 Structured version   Visualization version   GIF version

Theorem 2lgslem1a2 25160
Description: Lemma 2 for 2lgslem1a 25161. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))

Proof of Theorem 2lgslem1a2
StepHypRef Expression
1 zre 11419 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21rehalfcld 11317 . . . 4 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ)
32adantr 480 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ)
4 id 22 . . . . . 6 (𝐼 ∈ ℤ → 𝐼 ∈ ℤ)
5 2z 11447 . . . . . . 7 2 ∈ ℤ
65a1i 11 . . . . . 6 (𝐼 ∈ ℤ → 2 ∈ ℤ)
74, 6zmulcld 11526 . . . . 5 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ)
87zred 11520 . . . 4 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ)
98adantl 481 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ)
10 2re 11128 . . . . 5 2 ∈ ℝ
11 2pos 11150 . . . . 5 0 < 2
1210, 11pm3.2i 470 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
1312a1i 11 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
14 ltdiv1 10925 . . 3 (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
153, 9, 13, 14syl3anc 1366 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
16 zcn 11420 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716adantr 480 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ)
18 2cnne0 11280 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
1918a1i 11 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
20 divdiv1 10774 . . . . 5 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2117, 19, 19, 20syl3anc 1366 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
22 2t2e4 11215 . . . . 5 (2 · 2) = 4
2322oveq2i 6701 . . . 4 (𝑁 / (2 · 2)) = (𝑁 / 4)
2421, 23syl6eq 2701 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4))
25 zcn 11420 . . . . 5 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
2625adantl 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ)
27 2cnd 11131 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 11151 . . . . 5 2 ≠ 0
2928a1i 11 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan4d 10845 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼)
3124, 30breq12d 4698 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼))
32 4re 11135 . . . . 5 4 ∈ ℝ
3332a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℝ)
34 4ne0 11155 . . . . 5 4 ≠ 0
3534a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ≠ 0)
361, 33, 35redivcld 10891 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
37 fllt 12647 . . 3 (((𝑁 / 4) ∈ ℝ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3836, 37sylan 487 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3915, 31, 383bitrrd 295 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   · cmul 9979   < clt 10112   / cdiv 10722  2c2 11108  4c4 11110  cz 11415  cfl 12631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-fl 12633
This theorem is referenced by:  2lgslem1a  25161
  Copyright terms: Public domain W3C validator