MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a2 Structured version   Visualization version   GIF version

Theorem 2lgslem1a2 24832
Description: Lemma 2 for 2lgslem1a 24833. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))

Proof of Theorem 2lgslem1a2
StepHypRef Expression
1 zre 11214 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21rehalfcld 11126 . . . 4 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ)
32adantr 479 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ)
4 id 22 . . . . . 6 (𝐼 ∈ ℤ → 𝐼 ∈ ℤ)
5 2z 11242 . . . . . . 7 2 ∈ ℤ
65a1i 11 . . . . . 6 (𝐼 ∈ ℤ → 2 ∈ ℤ)
74, 6zmulcld 11320 . . . . 5 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ)
87zred 11314 . . . 4 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ)
98adantl 480 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ)
10 2re 10937 . . . . 5 2 ∈ ℝ
11 2pos 10959 . . . . 5 0 < 2
1210, 11pm3.2i 469 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
1312a1i 11 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
14 ltdiv1 10736 . . 3 (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
153, 9, 13, 14syl3anc 1317 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
16 zcn 11215 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716adantr 479 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ)
18 2cnne0 11089 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
1918a1i 11 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
20 divdiv1 10585 . . . . 5 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2117, 19, 19, 20syl3anc 1317 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
22 2t2e4 11024 . . . . 5 (2 · 2) = 4
2322oveq2i 6538 . . . 4 (𝑁 / (2 · 2)) = (𝑁 / 4)
2421, 23syl6eq 2659 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4))
25 zcn 11215 . . . . 5 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
2625adantl 480 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ)
27 2cnd 10940 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 10960 . . . . 5 2 ≠ 0
2928a1i 11 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan4d 10656 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼)
3124, 30breq12d 4590 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼))
32 4re 10944 . . . . 5 4 ∈ ℝ
3332a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℝ)
34 4ne0 10964 . . . . 5 4 ≠ 0
3534a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ≠ 0)
361, 33, 35redivcld 10702 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
37 fllt 12424 . . 3 (((𝑁 / 4) ∈ ℝ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3836, 37sylan 486 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3915, 31, 383bitrrd 293 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792   · cmul 9797   < clt 9930   / cdiv 10533  2c2 10917  4c4 10919  cz 11210  cfl 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-n0 11140  df-z 11211  df-uz 11520  df-fl 12410
This theorem is referenced by:  2lgslem1a  24833
  Copyright terms: Public domain W3C validator