MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3b Structured version   Visualization version   GIF version

Theorem 2lgslem3b 25167
Description: Lemma for 2lgslem3b1 25171. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3b ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 6697 . . . . 5 (𝑃 = ((8 · 𝐾) + 3) → (𝑃 − 1) = (((8 · 𝐾) + 3) − 1))
32oveq1d 6705 . . . 4 (𝑃 = ((8 · 𝐾) + 3) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 3) − 1) / 2))
4 oveq1 6697 . . . . 5 (𝑃 = ((8 · 𝐾) + 3) → (𝑃 / 4) = (((8 · 𝐾) + 3) / 4))
54fveq2d 6233 . . . 4 (𝑃 = ((8 · 𝐾) + 3) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 3) / 4)))
63, 5oveq12d 6708 . . 3 (𝑃 = ((8 · 𝐾) + 3) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))))
71, 6syl5eq 2697 . 2 (𝑃 = ((8 · 𝐾) + 3) → 𝑁 = (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))))
8 8nn0 11353 . . . . . . . . . . 11 8 ∈ ℕ0
98a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
10 id 22 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
119, 10nn0mulcld 11394 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1211nn0cnd 11391 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
13 3cn 11133 . . . . . . . . 9 3 ∈ ℂ
1413a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 3 ∈ ℂ)
15 1cnd 10094 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
1612, 14, 15addsubassd 10450 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) − 1) = ((8 · 𝐾) + (3 − 1)))
17 4t2e8 11219 . . . . . . . . . . . 12 (4 · 2) = 8
1817eqcomi 2660 . . . . . . . . . . 11 8 = (4 · 2)
1918a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 = (4 · 2))
2019oveq1d 6705 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 2) · 𝐾))
21 4cn 11136 . . . . . . . . . . 11 4 ∈ ℂ
2221a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
23 2cn 11129 . . . . . . . . . . 11 2 ∈ ℂ
2423a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
25 nn0cn 11340 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2622, 24, 25mul32d 10284 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((4 · 2) · 𝐾) = ((4 · 𝐾) · 2))
2720, 26eqtrd 2685 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 𝐾) · 2))
28 3m1e2 11175 . . . . . . . . 9 (3 − 1) = 2
2928a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (3 − 1) = 2)
3027, 29oveq12d 6708 . . . . . . 7 (𝐾 ∈ ℕ0 → ((8 · 𝐾) + (3 − 1)) = (((4 · 𝐾) · 2) + 2))
3116, 30eqtrd 2685 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) − 1) = (((4 · 𝐾) · 2) + 2))
3231oveq1d 6705 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 3) − 1) / 2) = ((((4 · 𝐾) · 2) + 2) / 2))
33 4nn0 11349 . . . . . . . . . 10 4 ∈ ℕ0
3433a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3534, 10nn0mulcld 11394 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3635nn0cnd 11391 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
3736, 24mulcld 10098 . . . . . 6 (𝐾 ∈ ℕ0 → ((4 · 𝐾) · 2) ∈ ℂ)
38 2rp 11875 . . . . . . . 8 2 ∈ ℝ+
3938a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ∈ ℝ+)
4039rpcnne0d 11919 . . . . . 6 (𝐾 ∈ ℕ0 → (2 ∈ ℂ ∧ 2 ≠ 0))
41 divdir 10748 . . . . . 6 ((((4 · 𝐾) · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((4 · 𝐾) · 2) + 2) / 2) = ((((4 · 𝐾) · 2) / 2) + (2 / 2)))
4237, 24, 40, 41syl3anc 1366 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) + 2) / 2) = ((((4 · 𝐾) · 2) / 2) + (2 / 2)))
43 2ne0 11151 . . . . . . . 8 2 ≠ 0
4443a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ≠ 0)
4536, 24, 44divcan4d 10845 . . . . . 6 (𝐾 ∈ ℕ0 → (((4 · 𝐾) · 2) / 2) = (4 · 𝐾))
46 2div2e1 11188 . . . . . . 7 (2 / 2) = 1
4746a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → (2 / 2) = 1)
4845, 47oveq12d 6708 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) / 2) + (2 / 2)) = ((4 · 𝐾) + 1))
4932, 42, 483eqtrd 2689 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 3) − 1) / 2) = ((4 · 𝐾) + 1))
50 4ne0 11155 . . . . . . . . . 10 4 ≠ 0
5121, 50pm3.2i 470 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
5251a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
53 divdir 10748 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 3 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 3) / 4) = (((8 · 𝐾) / 4) + (3 / 4)))
5412, 14, 52, 53syl3anc 1366 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) / 4) = (((8 · 𝐾) / 4) + (3 / 4)))
55 8cn 11144 . . . . . . . . . . 11 8 ∈ ℂ
5655a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
57 div23 10742 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5856, 25, 52, 57syl3anc 1366 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5918oveq1i 6700 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
6023, 21, 50divcan3i 10809 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
6159, 60eqtri 2673 . . . . . . . . . . 11 (8 / 4) = 2
6261a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
6362oveq1d 6705 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
6458, 63eqtrd 2685 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
6564oveq1d 6705 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (3 / 4)) = ((2 · 𝐾) + (3 / 4)))
6654, 65eqtrd 2685 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) / 4) = ((2 · 𝐾) + (3 / 4)))
6766fveq2d 6233 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 3) / 4)) = (⌊‘((2 · 𝐾) + (3 / 4))))
68 3lt4 11235 . . . . . 6 3 < 4
69 2nn0 11347 . . . . . . . . . 10 2 ∈ ℕ0
7069a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
7170, 10nn0mulcld 11394 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
7271nn0zd 11518 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
73 3nn0 11348 . . . . . . . 8 3 ∈ ℕ0
7473a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 3 ∈ ℕ0)
75 4nn 11225 . . . . . . . 8 4 ∈ ℕ
7675a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
77 adddivflid 12659 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾)))
7872, 74, 76, 77syl3anc 1366 . . . . . 6 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾)))
7968, 78mpbii 223 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾))
8067, 79eqtrd 2685 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 3) / 4)) = (2 · 𝐾))
8149, 80oveq12d 6708 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))) = (((4 · 𝐾) + 1) − (2 · 𝐾)))
8271nn0cnd 11391 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
8336, 15, 82addsubd 10451 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) + 1) − (2 · 𝐾)) = (((4 · 𝐾) − (2 · 𝐾)) + 1))
84 2t2e4 11215 . . . . . . . . . 10 (2 · 2) = 4
8584eqcomi 2660 . . . . . . . . 9 4 = (2 · 2)
8685a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
8786oveq1d 6705 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
8824, 24, 25mulassd 10101 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
8987, 88eqtrd 2685 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
9089oveq1d 6705 . . . . 5 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
91 2txmxeqx 11187 . . . . . 6 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
9282, 91syl 17 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
9390, 92eqtrd 2685 . . . 4 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = (2 · 𝐾))
9493oveq1d 6705 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) − (2 · 𝐾)) + 1) = ((2 · 𝐾) + 1))
9581, 83, 943eqtrd 2689 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))) = ((2 · 𝐾) + 1))
967, 95sylan9eqr 2707 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  8c8 11114  0cn0 11330  cz 11415  +crp 11870  cfl 12631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633
This theorem is referenced by:  2lgslem3b1  25171
  Copyright terms: Public domain W3C validator