MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3b1 Structured version   Visualization version   GIF version

Theorem 2lgslem3b1 24839
Description: Lemma 2 for 2lgslem3 24842. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3b1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)

Proof of Theorem 2lgslem3b1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11142 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 11034 . . . . 5 8 ∈ ℕ
3 nnrp 11670 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 12527 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
61, 4, 5sylancl 692 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
7 simpr 475 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 11145 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 10949 . . . . . . . . . . . . 13 8 ∈ ℂ
109a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 9913 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 480 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 6538 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 3) = ((8 · 𝑘) + 3))
1413eqeq2d 2615 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) ↔ 𝑃 = ((8 · 𝑘) + 3)))
1514biimpa 499 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑃 = ((8 · 𝑘) + 3))
16 2lgslem2.n . . . . . . . 8 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3b 24835 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
187, 15, 17syl2an2r 871 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
19 oveq1 6530 . . . . . . 7 (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2))
20 nn0z 11229 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
21 eqidd 2606 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1))
22 2tp1odd 14856 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1))
2320, 21, 22syl2anc 690 . . . . . . . 8 (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1))
24 2z 11238 . . . . . . . . . . . 12 2 ∈ ℤ
2524a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 2 ∈ ℤ)
2625, 20zmulcld 11316 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ)
2726peano2zd 11313 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ)
28 mod2eq1n2dvds 14851 . . . . . . . . 9 (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
2927, 28syl 17 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
3023, 29mpbird 245 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1)
3119, 30sylan9eqr 2661 . . . . . 6 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1)
327, 18, 31syl2an2r 871 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → (𝑁 mod 2) = 1)
3332ex 448 . . . 4 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1))
3433rexlimdva 3008 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1))
356, 34syld 45 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → (𝑁 mod 2) = 1))
3635imp 443 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wrex 2892   class class class wbr 4573  cfv 5786  (class class class)co 6523  cc 9786  1c1 9789   + caddc 9791   · cmul 9793  cmin 10113   / cdiv 10529  cn 10863  2c2 10913  3c3 10914  4c4 10915  8c8 10919  0cn0 11135  cz 11206  +crp 11660  cfl 12404   mod cmo 12481  cdvds 14763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-sup 8204  df-inf 8205  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-ico 12004  df-fl 12406  df-mod 12482  df-dvds 14764
This theorem is referenced by:  2lgslem3  24842
  Copyright terms: Public domain W3C validator