![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem3b1 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2lgslem3 25174. (Contributed by AV, 16-Jul-2021.) |
Ref | Expression |
---|---|
2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
Ref | Expression |
---|---|
2lgslem3b1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 11337 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
2 | 8nn 11229 | . . . . 5 ⊢ 8 ∈ ℕ | |
3 | nnrp 11880 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 8 ∈ ℝ+ |
5 | modmuladdnn0 12754 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3))) | |
6 | 1, 4, 5 | sylancl 695 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3))) |
7 | simpr 476 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
8 | nn0cn 11340 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
9 | 8cn 11144 | . . . . . . . . . . . . 13 ⊢ 8 ∈ ℂ | |
10 | 9 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
11 | 8, 10 | mulcomd 10099 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
12 | 11 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
13 | 12 | oveq1d 6705 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 3) = ((8 · 𝑘) + 3)) |
14 | 13 | eqeq2d 2661 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) ↔ 𝑃 = ((8 · 𝑘) + 3))) |
15 | 14 | biimpa 500 | . . . . . . 7 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑃 = ((8 · 𝑘) + 3)) |
16 | 2lgslem2.n | . . . . . . . 8 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
17 | 16 | 2lgslem3b 25167 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 3)) → 𝑁 = ((2 · 𝑘) + 1)) |
18 | 7, 15, 17 | syl2an2r 893 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑁 = ((2 · 𝑘) + 1)) |
19 | oveq1 6697 | . . . . . . 7 ⊢ (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2)) | |
20 | nn0z 11438 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
21 | eqidd 2652 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) | |
22 | 2tp1odd 15123 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1)) | |
23 | 20, 21, 22 | syl2anc 694 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1)) |
24 | 2z 11447 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℤ | |
25 | 24 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℤ) |
26 | 25, 20 | zmulcld 11526 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ) |
27 | 26 | peano2zd 11523 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ) |
28 | mod2eq1n2dvds 15118 | . . . . . . . . 9 ⊢ (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) | |
29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) |
30 | 23, 29 | mpbird 247 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1) |
31 | 19, 30 | sylan9eqr 2707 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1) |
32 | 7, 18, 31 | syl2an2r 893 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → (𝑁 mod 2) = 1) |
33 | 32 | ex 449 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1)) |
34 | 33 | rexlimdva 3060 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1)) |
35 | 6, 34 | syld 47 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → (𝑁 mod 2) = 1)) |
36 | 35 | imp 444 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 1c1 9975 + caddc 9977 · cmul 9979 − cmin 10304 / cdiv 10722 ℕcn 11058 2c2 11108 3c3 11109 4c4 11110 8c8 11114 ℕ0cn0 11330 ℤcz 11415 ℝ+crp 11870 ⌊cfl 12631 mod cmo 12708 ∥ cdvds 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-ico 12219 df-fl 12633 df-mod 12709 df-dvds 15028 |
This theorem is referenced by: 2lgslem3 25174 |
Copyright terms: Public domain | W3C validator |