MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3d Structured version   Visualization version   GIF version

Theorem 2lgslem3d 25977
Description: Lemma for 2lgslem3d1 25981. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))

Proof of Theorem 2lgslem3d
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7165 . . . . 5 (𝑃 = ((8 · 𝐾) + 7) → (𝑃 − 1) = (((8 · 𝐾) + 7) − 1))
32oveq1d 7173 . . . 4 (𝑃 = ((8 · 𝐾) + 7) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 7) − 1) / 2))
4 fvoveq1 7181 . . . 4 (𝑃 = ((8 · 𝐾) + 7) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 7) / 4)))
53, 4oveq12d 7176 . . 3 (𝑃 = ((8 · 𝐾) + 7) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))))
61, 5syl5eq 2870 . 2 (𝑃 = ((8 · 𝐾) + 7) → 𝑁 = (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))))
7 8nn0 11923 . . . . . . . . . . 11 8 ∈ ℕ0
87a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 11963 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 11960 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 7cn 11734 . . . . . . . . 9 7 ∈ ℂ
1312a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 7 ∈ ℂ)
14 1cnd 10638 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
1511, 13, 14addsubassd 11019 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) − 1) = ((8 · 𝐾) + (7 − 1)))
16 4t2e8 11808 . . . . . . . . . . . 12 (4 · 2) = 8
1716eqcomi 2832 . . . . . . . . . . 11 8 = (4 · 2)
1817a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 = (4 · 2))
1918oveq1d 7173 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 2) · 𝐾))
20 4cn 11725 . . . . . . . . . . 11 4 ∈ ℂ
2120a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
22 2cn 11715 . . . . . . . . . . 11 2 ∈ ℂ
2322a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
24 nn0cn 11910 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2521, 23, 24mul32d 10852 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((4 · 2) · 𝐾) = ((4 · 𝐾) · 2))
2619, 25eqtrd 2858 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 𝐾) · 2))
27 7m1e6 11772 . . . . . . . . 9 (7 − 1) = 6
2827a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (7 − 1) = 6)
2926, 28oveq12d 7176 . . . . . . 7 (𝐾 ∈ ℕ0 → ((8 · 𝐾) + (7 − 1)) = (((4 · 𝐾) · 2) + 6))
3015, 29eqtrd 2858 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) − 1) = (((4 · 𝐾) · 2) + 6))
3130oveq1d 7173 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 7) − 1) / 2) = ((((4 · 𝐾) · 2) + 6) / 2))
32 4nn0 11919 . . . . . . . . . 10 4 ∈ ℕ0
3332a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3433, 9nn0mulcld 11963 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3534nn0cnd 11960 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
3635, 23mulcld 10663 . . . . . 6 (𝐾 ∈ ℕ0 → ((4 · 𝐾) · 2) ∈ ℂ)
37 6cn 11731 . . . . . . 7 6 ∈ ℂ
3837a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 6 ∈ ℂ)
39 2rp 12397 . . . . . . . 8 2 ∈ ℝ+
4039a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ∈ ℝ+)
4140rpcnne0d 12443 . . . . . 6 (𝐾 ∈ ℕ0 → (2 ∈ ℂ ∧ 2 ≠ 0))
42 divdir 11325 . . . . . 6 ((((4 · 𝐾) · 2) ∈ ℂ ∧ 6 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((4 · 𝐾) · 2) + 6) / 2) = ((((4 · 𝐾) · 2) / 2) + (6 / 2)))
4336, 38, 41, 42syl3anc 1367 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) + 6) / 2) = ((((4 · 𝐾) · 2) / 2) + (6 / 2)))
44 2ne0 11744 . . . . . . . 8 2 ≠ 0
4544a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ≠ 0)
4635, 23, 45divcan4d 11424 . . . . . 6 (𝐾 ∈ ℕ0 → (((4 · 𝐾) · 2) / 2) = (4 · 𝐾))
47 3t2e6 11806 . . . . . . . . . 10 (3 · 2) = 6
4847eqcomi 2832 . . . . . . . . 9 6 = (3 · 2)
4948oveq1i 7168 . . . . . . . 8 (6 / 2) = ((3 · 2) / 2)
50 3cn 11721 . . . . . . . . 9 3 ∈ ℂ
5150, 22, 44divcan4i 11389 . . . . . . . 8 ((3 · 2) / 2) = 3
5249, 51eqtri 2846 . . . . . . 7 (6 / 2) = 3
5352a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → (6 / 2) = 3)
5446, 53oveq12d 7176 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) / 2) + (6 / 2)) = ((4 · 𝐾) + 3))
5531, 43, 543eqtrd 2862 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 7) − 1) / 2) = ((4 · 𝐾) + 3))
56 4ne0 11748 . . . . . . . . . 10 4 ≠ 0
5720, 56pm3.2i 473 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
5857a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
59 divdir 11325 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 7 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 7) / 4) = (((8 · 𝐾) / 4) + (7 / 4)))
6011, 13, 58, 59syl3anc 1367 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) / 4) = (((8 · 𝐾) / 4) + (7 / 4)))
61 8cn 11737 . . . . . . . . . . 11 8 ∈ ℂ
6261a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
63 div23 11319 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
6462, 24, 58, 63syl3anc 1367 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
6517oveq1i 7168 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
6622, 20, 56divcan3i 11388 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
6765, 66eqtri 2846 . . . . . . . . . . 11 (8 / 4) = 2
6867a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
6968oveq1d 7173 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
7064, 69eqtrd 2858 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
7170oveq1d 7173 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (7 / 4)) = ((2 · 𝐾) + (7 / 4)))
7260, 71eqtrd 2858 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) / 4) = ((2 · 𝐾) + (7 / 4)))
7372fveq2d 6676 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 7) / 4)) = (⌊‘((2 · 𝐾) + (7 / 4))))
74 3lt4 11814 . . . . . 6 3 < 4
75 2nn0 11917 . . . . . . . . . . . 12 2 ∈ ℕ0
7675a1i 11 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
7776, 9nn0mulcld 11963 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
7877nn0zd 12088 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
7978peano2zd 12093 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + 1) ∈ ℤ)
80 3nn0 11918 . . . . . . . . 9 3 ∈ ℕ0
8180a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 3 ∈ ℕ0)
82 4nn 11723 . . . . . . . . 9 4 ∈ ℕ
8382a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
84 adddivflid 13191 . . . . . . . 8 ((((2 · 𝐾) + 1) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1)))
8579, 81, 83, 84syl3anc 1367 . . . . . . 7 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1)))
8623, 24mulcld 10663 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
8750a1i 11 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 3 ∈ ℂ)
8856a1i 11 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 4 ≠ 0)
8987, 21, 88divcld 11418 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (3 / 4) ∈ ℂ)
9086, 14, 89addassd 10665 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (3 / 4)) = ((2 · 𝐾) + (1 + (3 / 4))))
91 4p3e7 11794 . . . . . . . . . . . . . . 15 (4 + 3) = 7
9291eqcomi 2832 . . . . . . . . . . . . . 14 7 = (4 + 3)
9392oveq1i 7168 . . . . . . . . . . . . 13 (7 / 4) = ((4 + 3) / 4)
9420, 50, 20, 56divdiri 11399 . . . . . . . . . . . . 13 ((4 + 3) / 4) = ((4 / 4) + (3 / 4))
9520, 56dividi 11375 . . . . . . . . . . . . . 14 (4 / 4) = 1
9695oveq1i 7168 . . . . . . . . . . . . 13 ((4 / 4) + (3 / 4)) = (1 + (3 / 4))
9793, 94, 963eqtri 2850 . . . . . . . . . . . 12 (7 / 4) = (1 + (3 / 4))
9897a1i 11 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (7 / 4) = (1 + (3 / 4)))
9998eqcomd 2829 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (1 + (3 / 4)) = (7 / 4))
10099oveq2d 7174 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + (1 + (3 / 4))) = ((2 · 𝐾) + (7 / 4)))
10190, 100eqtrd 2858 . . . . . . . 8 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (3 / 4)) = ((2 · 𝐾) + (7 / 4)))
102101fveqeq2d 6680 . . . . . . 7 (𝐾 ∈ ℕ0 → ((⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1) ↔ (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1)))
10385, 102bitrd 281 . . . . . 6 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1)))
10474, 103mpbii 235 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1))
10573, 104eqtrd 2858 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 7) / 4)) = ((2 · 𝐾) + 1))
10655, 105oveq12d 7176 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))) = (((4 · 𝐾) + 3) − ((2 · 𝐾) + 1)))
10777nn0cnd 11960 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
10835, 87, 107, 14addsub4d 11046 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) + 3) − ((2 · 𝐾) + 1)) = (((4 · 𝐾) − (2 · 𝐾)) + (3 − 1)))
109 2t2e4 11804 . . . . . . . . . 10 (2 · 2) = 4
110109eqcomi 2832 . . . . . . . . 9 4 = (2 · 2)
111110a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
112111oveq1d 7173 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
11323, 23, 24mulassd 10666 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
114112, 113eqtrd 2858 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
115114oveq1d 7173 . . . . 5 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
116 2txmxeqx 11780 . . . . . 6 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
117107, 116syl 17 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
118115, 117eqtrd 2858 . . . 4 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = (2 · 𝐾))
119 3m1e2 11768 . . . . 5 (3 − 1) = 2
120119a1i 11 . . . 4 (𝐾 ∈ ℕ0 → (3 − 1) = 2)
121118, 120oveq12d 7176 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) − (2 · 𝐾)) + (3 − 1)) = ((2 · 𝐾) + 2))
122106, 108, 1213eqtrd 2862 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))) = ((2 · 𝐾) + 2))
1236, 122sylan9eqr 2880 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  4c4 11697  6c6 11699  7c7 11700  8c8 11701  0cn0 11900  cz 11984  +crp 12392  cfl 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165
This theorem is referenced by:  2lgslem3d1  25981
  Copyright terms: Public domain W3C validator