MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem4 Structured version   Visualization version   GIF version

Theorem 2lgslem4 24875
Description: Lemma 4 for 2lgs 24876: special case of 2lgs 24876 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
2lgslem4 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})

Proof of Theorem 2lgslem4
StepHypRef Expression
1 2lgs2 24874 . . 3 (2 /L 2) = 0
21eqeq1i 2614 . 2 ((2 /L 2) = 1 ↔ 0 = 1)
3 0ne1 10937 . . . 4 0 ≠ 1
43neii 2783 . . 3 ¬ 0 = 1
5 1ne2 11089 . . . . 5 1 ≠ 2
65nesymi 2838 . . . 4 ¬ 2 = 1
7 2re 10939 . . . . . 6 2 ∈ ℝ
8 2lt7 11062 . . . . . 6 2 < 7
97, 8ltneii 10001 . . . . 5 2 ≠ 7
109neii 2783 . . . 4 ¬ 2 = 7
116, 10pm3.2ni 894 . . 3 ¬ (2 = 1 ∨ 2 = 7)
124, 112false 363 . 2 (0 = 1 ↔ (2 = 1 ∨ 2 = 7))
13 8nn 11040 . . . . . 6 8 ∈ ℕ
14 nnrp 11676 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
1513, 14ax-mp 5 . . . . 5 8 ∈ ℝ+
16 0le2 10960 . . . . 5 0 ≤ 2
17 2lt8 11069 . . . . 5 2 < 8
18 modid 12514 . . . . 5 (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2)
197, 15, 16, 17, 18mp4an 704 . . . 4 (2 mod 8) = 2
2019eleq1i 2678 . . 3 ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7})
21 2ex 10941 . . . 4 2 ∈ V
2221elpr 4145 . . 3 (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7))
2320, 22bitr2i 263 . 2 ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7})
242, 12, 233bitri 284 1 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
Colors of variables: wff setvar class
Syntax hints:  wb 194  wo 381   = wceq 1474  wcel 1976  {cpr 4126   class class class wbr 4577  (class class class)co 6526  cr 9791  0cc0 9792  1c1 9793   < clt 9930  cle 9931  cn 10869  2c2 10919  7c7 10924  8c8 10925  +crp 11666   mod cmo 12487   /L clgs 24763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-n0 11142  df-z 11213  df-uz 11522  df-q 11623  df-rp 11667  df-fz 12155  df-fzo 12292  df-fl 12412  df-mod 12488  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-dvds 14770  df-gcd 15003  df-prm 15172  df-phi 15257  df-pc 15328  df-lgs 24764
This theorem is referenced by:  2lgs  24876
  Copyright terms: Public domain W3C validator