MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprm Structured version   Visualization version   GIF version

Theorem 2lgsoddprm 25986
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 4102 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2lgs 25977 . . 3 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
31, 2syl 17 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
4 simpl 485 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = 1)
5 eqcom 2828 . . . . . . . . 9 (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1)
65a1i 11 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1))
7 nnoddn2prm 16142 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
8 nnz 11998 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
98anim1i 616 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
107, 9syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
11 sqoddm1div8z 15697 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
1210, 11syl 17 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
13 m1exp1 15721 . . . . . . . . 9 ((((𝑃↑2) − 1) / 8) ∈ ℤ → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
1412, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
15 2lgsoddprmlem4 25985 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
1610, 15syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
176, 14, 163bitrd 307 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (𝑃 mod 8) ∈ {1, 7}))
1817biimparc 482 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
1918adantl 484 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
204, 19eqtrd 2856 . . . 4 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
2120exp32 423 . . 3 ((2 /L 𝑃) = 1 → ((𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
22 2z 12008 . . . . . 6 2 ∈ ℤ
23 prmz 16013 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
241, 23syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
25 lgscl1 25890 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
2622, 24, 25sylancr 589 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ∈ {-1, 0, 1})
27 ovex 7183 . . . . . . 7 (2 /L 𝑃) ∈ V
2827eltp 4619 . . . . . 6 ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
29 simpl 485 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = -1)
3016notbid 320 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ (((𝑃↑2) − 1) / 8) ↔ ¬ (𝑃 mod 8) ∈ {1, 7}))
3130biimpar 480 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → ¬ 2 ∥ (((𝑃↑2) − 1) / 8))
32 m1expo 15720 . . . . . . . . . . . . 13 (((((𝑃↑2) − 1) / 8) ∈ ℤ ∧ ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3312, 31, 32syl2an2r 683 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3433eqcomd 2827 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3534adantl 484 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3629, 35eqtrd 2856 . . . . . . . . 9 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
3736a1d 25 . . . . . . . 8 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
3837exp32 423 . . . . . . 7 ((2 /L 𝑃) = -1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
39 eldifsn 4712 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
40 simpr 487 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
4140necomd 3071 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
4239, 41sylbi 219 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
43 2prm 16030 . . . . . . . . . . 11 2 ∈ ℙ
44 prmrp 16050 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4543, 1, 44sylancr 589 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4642, 45mpbird 259 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
47 lgsne0 25905 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4822, 24, 47sylancr 589 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4946, 48mpbird 259 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ≠ 0)
50 eqneqall 3027 . . . . . . . 8 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) ≠ 0 → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5149, 50syl5 34 . . . . . . 7 ((2 /L 𝑃) = 0 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
52 pm2.24 124 . . . . . . . 8 ((2 /L 𝑃) = 1 → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
53522a1d 26 . . . . . . 7 ((2 /L 𝑃) = 1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5438, 51, 533jaoi 1423 . . . . . 6 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5528, 54sylbi 219 . . . . 5 ((2 /L 𝑃) ∈ {-1, 0, 1} → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5626, 55mpcom 38 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5756com13 88 . . 3 (¬ (2 /L 𝑃) = 1 → (¬ (𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5821, 57bija 384 . 2 (((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}) → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
593, 58mpcom 38 1 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4560  {cpr 4562  {ctp 4564   class class class wbr 5058  (class class class)co 7150  0cc0 10531  1c1 10532  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  7c7 11691  8c8 11692  cz 11975   mod cmo 13231  cexp 13423  cdvds 15601   gcd cgcd 15837  cprime 16009   /L clgs 25864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-ioo 12736  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-prod 15254  df-dvds 15602  df-gcd 15838  df-prm 16010  df-phi 16097  df-pc 16168  df-lgs 25865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator