MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprm Structured version   Visualization version   GIF version

Theorem 2lgsoddprm 25122
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 3724 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2lgs 25113 . . 3 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
31, 2syl 17 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
4 simpl 473 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = 1)
5 eqcom 2627 . . . . . . . . 9 (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1)
65a1i 11 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1))
7 nnoddn2prm 15497 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
8 nnz 11384 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
98anim1i 591 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
107, 9syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
11 sqoddm1div8z 15059 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
1210, 11syl 17 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
13 m1exp1 15074 . . . . . . . . 9 ((((𝑃↑2) − 1) / 8) ∈ ℤ → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
1412, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
15 2lgsoddprmlem4 25121 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
1610, 15syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
176, 14, 163bitrd 294 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (𝑃 mod 8) ∈ {1, 7}))
1817biimparc 504 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
1918adantl 482 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
204, 19eqtrd 2654 . . . 4 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
2120exp32 630 . . 3 ((2 /L 𝑃) = 1 → ((𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
22 2z 11394 . . . . . 6 2 ∈ ℤ
23 prmz 15370 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
241, 23syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
25 lgscl1 25026 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
2622, 24, 25sylancr 694 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ∈ {-1, 0, 1})
27 ovex 6663 . . . . . . 7 (2 /L 𝑃) ∈ V
2827eltp 4221 . . . . . 6 ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
29 simpl 473 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = -1)
3016notbid 308 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ (((𝑃↑2) − 1) / 8) ↔ ¬ (𝑃 mod 8) ∈ {1, 7}))
3130biimpar 502 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → ¬ 2 ∥ (((𝑃↑2) − 1) / 8))
32 m1expo 15073 . . . . . . . . . . . . 13 (((((𝑃↑2) − 1) / 8) ∈ ℤ ∧ ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3312, 31, 32syl2an2r 875 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3433eqcomd 2626 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3534adantl 482 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3629, 35eqtrd 2654 . . . . . . . . 9 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
3736a1d 25 . . . . . . . 8 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
3837exp32 630 . . . . . . 7 ((2 /L 𝑃) = -1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
39 eldifsn 4308 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
40 simpr 477 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
4140necomd 2846 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
4239, 41sylbi 207 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
43 2prm 15386 . . . . . . . . . . 11 2 ∈ ℙ
44 prmrp 15405 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4543, 1, 44sylancr 694 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4642, 45mpbird 247 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
47 lgsne0 25041 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4822, 24, 47sylancr 694 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4946, 48mpbird 247 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ≠ 0)
50 eqneqall 2802 . . . . . . . 8 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) ≠ 0 → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5149, 50syl5 34 . . . . . . 7 ((2 /L 𝑃) = 0 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
52 pm2.24 121 . . . . . . . 8 ((2 /L 𝑃) = 1 → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
53522a1d 26 . . . . . . 7 ((2 /L 𝑃) = 1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5438, 51, 533jaoi 1389 . . . . . 6 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5528, 54sylbi 207 . . . . 5 ((2 /L 𝑃) ∈ {-1, 0, 1} → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5626, 55mpcom 38 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5756com13 88 . . 3 (¬ (2 /L 𝑃) = 1 → (¬ (𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5821, 57bija 370 . 2 (((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}) → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
593, 58mpcom 38 1 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035   = wceq 1481  wcel 1988  wne 2791  cdif 3564  {csn 4168  {cpr 4170  {ctp 4172   class class class wbr 4644  (class class class)co 6635  0cc0 9921  1c1 9922  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  2c2 11055  7c7 11060  8c8 11061  cz 11362   mod cmo 12651  cexp 12843  cdvds 14964   gcd cgcd 15197  cprime 15366   /L clgs 25000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-ioo 12164  df-ico 12166  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-prod 14617  df-dvds 14965  df-gcd 15198  df-prm 15367  df-phi 15452  df-pc 15523  df-lgs 25001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator