MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem3 Structured version   Visualization version   GIF version

Theorem 2lgsoddprmlem3 25984
Description: Lemma 3 for 2lgsoddprm 25986. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 25897 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2 eleq1 2900 . . . . 5 ((𝑁 mod 8) = 𝑅 → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
32eqcoms 2829 . . . 4 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
4 elun 4125 . . . . . 6 (𝑅 ∈ ({1, 7} ∪ {3, 5}) ↔ (𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}))
5 elpri 4583 . . . . . . . 8 (𝑅 ∈ {3, 5} → (𝑅 = 3 ∨ 𝑅 = 5))
6 oveq1 7157 . . . . . . . . . . . . . 14 (𝑅 = 3 → (𝑅↑2) = (3↑2))
76oveq1d 7165 . . . . . . . . . . . . 13 (𝑅 = 3 → ((𝑅↑2) − 1) = ((3↑2) − 1))
87oveq1d 7165 . . . . . . . . . . . 12 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = (((3↑2) − 1) / 8))
9 2lgsoddprmlem3b 25981 . . . . . . . . . . . 12 (((3↑2) − 1) / 8) = 1
108, 9syl6eq 2872 . . . . . . . . . . 11 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = 1)
1110breq2d 5071 . . . . . . . . . 10 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 1))
12 n2dvds1 15711 . . . . . . . . . . 11 ¬ 2 ∥ 1
1312pm2.21i 119 . . . . . . . . . 10 (2 ∥ 1 → 𝑅 ∈ {1, 7})
1411, 13syl6bi 255 . . . . . . . . 9 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
15 oveq1 7157 . . . . . . . . . . . . . 14 (𝑅 = 5 → (𝑅↑2) = (5↑2))
1615oveq1d 7165 . . . . . . . . . . . . 13 (𝑅 = 5 → ((𝑅↑2) − 1) = ((5↑2) − 1))
1716oveq1d 7165 . . . . . . . . . . . 12 (𝑅 = 5 → (((𝑅↑2) − 1) / 8) = (((5↑2) − 1) / 8))
1817breq2d 5071 . . . . . . . . . . 11 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((5↑2) − 1) / 8)))
19 2lgsoddprmlem3c 25982 . . . . . . . . . . . 12 (((5↑2) − 1) / 8) = 3
2019breq2i 5067 . . . . . . . . . . 11 (2 ∥ (((5↑2) − 1) / 8) ↔ 2 ∥ 3)
2118, 20syl6bb 289 . . . . . . . . . 10 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 3))
22 n2dvds3 15715 . . . . . . . . . . 11 ¬ 2 ∥ 3
2322pm2.21i 119 . . . . . . . . . 10 (2 ∥ 3 → 𝑅 ∈ {1, 7})
2421, 23syl6bi 255 . . . . . . . . 9 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2514, 24jaoi 853 . . . . . . . 8 ((𝑅 = 3 ∨ 𝑅 = 5) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
265, 25syl 17 . . . . . . 7 (𝑅 ∈ {3, 5} → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2726jao1i 854 . . . . . 6 ((𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
284, 27sylbi 219 . . . . 5 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
29 elpri 4583 . . . . . 6 (𝑅 ∈ {1, 7} → (𝑅 = 1 ∨ 𝑅 = 7))
30 z0even 15710 . . . . . . . 8 2 ∥ 0
31 oveq1 7157 . . . . . . . . . . 11 (𝑅 = 1 → (𝑅↑2) = (1↑2))
3231oveq1d 7165 . . . . . . . . . 10 (𝑅 = 1 → ((𝑅↑2) − 1) = ((1↑2) − 1))
3332oveq1d 7165 . . . . . . . . 9 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = (((1↑2) − 1) / 8))
34 2lgsoddprmlem3a 25980 . . . . . . . . 9 (((1↑2) − 1) / 8) = 0
3533, 34syl6eq 2872 . . . . . . . 8 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = 0)
3630, 35breqtrrid 5097 . . . . . . 7 (𝑅 = 1 → 2 ∥ (((𝑅↑2) − 1) / 8))
37 2z 12008 . . . . . . . . 9 2 ∈ ℤ
38 3z 12009 . . . . . . . . 9 3 ∈ ℤ
39 dvdsmul1 15625 . . . . . . . . 9 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → 2 ∥ (2 · 3))
4037, 38, 39mp2an 690 . . . . . . . 8 2 ∥ (2 · 3)
41 oveq1 7157 . . . . . . . . . . 11 (𝑅 = 7 → (𝑅↑2) = (7↑2))
4241oveq1d 7165 . . . . . . . . . 10 (𝑅 = 7 → ((𝑅↑2) − 1) = ((7↑2) − 1))
4342oveq1d 7165 . . . . . . . . 9 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (((7↑2) − 1) / 8))
44 2lgsoddprmlem3d 25983 . . . . . . . . 9 (((7↑2) − 1) / 8) = (2 · 3)
4543, 44syl6eq 2872 . . . . . . . 8 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (2 · 3))
4640, 45breqtrrid 5097 . . . . . . 7 (𝑅 = 7 → 2 ∥ (((𝑅↑2) − 1) / 8))
4736, 46jaoi 853 . . . . . 6 ((𝑅 = 1 ∨ 𝑅 = 7) → 2 ∥ (((𝑅↑2) − 1) / 8))
4829, 47syl 17 . . . . 5 (𝑅 ∈ {1, 7} → 2 ∥ (((𝑅↑2) − 1) / 8))
4928, 48impbid1 227 . . . 4 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
503, 49syl6bi 255 . . 3 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
511, 50syl5com 31 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑅 = (𝑁 mod 8) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
52513impia 1113 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  cun 3934  {cpr 4563   class class class wbr 5059  (class class class)co 7150  0cc0 10531  1c1 10532   · cmul 10536  cmin 10864   / cdiv 11291  2c2 11686  3c3 11687  5c5 11689  7c7 11691  8c8 11692  cz 11975   mod cmo 13231  cexp 13423  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-dvds 15602
This theorem is referenced by:  2lgsoddprmlem4  25985
  Copyright terms: Public domain W3C validator