Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma3r Structured version   Visualization version   GIF version

Theorem 2llnma3r 34593
Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.)
Hypotheses
Ref Expression
2llnm.l = (le‘𝐾)
2llnm.j = (join‘𝐾)
2llnm.m = (meet‘𝐾)
2llnm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2llnma3r ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)

Proof of Theorem 2llnma3r
StepHypRef Expression
1 simp1 1059 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ HL)
2 simp21 1092 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑃𝐴)
3 simp23 1094 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅𝐴)
4 2llnm.j . . . . 5 = (join‘𝐾)
5 2llnm.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5hlatjcom 34173 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
71, 2, 3, 6syl3anc 1323 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) = (𝑅 𝑃))
8 simp22 1093 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄𝐴)
94, 5hlatjcom 34173 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
101, 8, 3, 9syl3anc 1323 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 𝑅) = (𝑅 𝑄))
117, 10oveq12d 6633 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = ((𝑅 𝑃) (𝑅 𝑄)))
12 simpr 477 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑄 = 𝑅)
1312oveq2d 6631 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = (𝑅 𝑅))
14 simpl1 1062 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL)
15 simpl23 1139 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑅𝐴)
164, 5hlatjidm 34174 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
1714, 15, 16syl2anc 692 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑅) = 𝑅)
1813, 17eqtrd 2655 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = 𝑅)
1918oveq2d 6631 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = ((𝑅 𝑃) 𝑅))
20 2llnm.l . . . . . . . 8 = (le‘𝐾)
2120, 4, 5hlatlej1 34180 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑅 (𝑅 𝑃))
221, 3, 2, 21syl3anc 1323 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑅 𝑃))
23 hllat 34169 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
24233ad2ant1 1080 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ Lat)
25 eqid 2621 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 5atbase 34095 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
273, 26syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
2825, 4, 5hlatjcl 34172 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
291, 3, 2, 28syl3anc 1323 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 𝑃) ∈ (Base‘𝐾))
30 2llnm.m . . . . . . . 8 = (meet‘𝐾)
3125, 20, 30latleeqm2 17020 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3224, 27, 29, 31syl3anc 1323 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3322, 32mpbid 222 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) 𝑅) = 𝑅)
3433adantr 481 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) 𝑅) = 𝑅)
3519, 34eqtrd 2655 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
36 simpl1 1062 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
37 simpl21 1137 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑃𝐴)
38 simpl23 1139 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑅𝐴)
39 simpl22 1138 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝐴)
40 simpl3 1064 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑃 𝑅) ≠ (𝑄 𝑅))
4120, 4, 5hlatlej2 34181 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑅 (𝑃 𝑅))
421, 2, 3, 41syl3anc 1323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑃 𝑅))
4325, 5atbase 34095 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
448, 43syl 17 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
4525, 4, 5hlatjcl 34172 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
461, 2, 3, 45syl3anc 1323 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4725, 20, 4latjle12 17002 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4824, 44, 27, 46, 47syl13anc 1325 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4948biimpd 219 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) → (𝑄 𝑅) (𝑃 𝑅)))
5042, 49mpan2d 709 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
5150adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
52 simpr 477 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝑅)
5320, 4, 5ps-1 34282 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑃𝐴𝑅𝐴)) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5436, 39, 38, 52, 37, 38, 53syl132anc 1341 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5554biimpd 219 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑄 𝑅) = (𝑃 𝑅)))
56 eqcom 2628 . . . . . . . 8 ((𝑄 𝑅) = (𝑃 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅))
5755, 56syl6ib 241 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5851, 57syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5958necon3ad 2803 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑃 𝑅) ≠ (𝑄 𝑅) → ¬ 𝑄 (𝑃 𝑅)))
6040, 59mpd 15 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ¬ 𝑄 (𝑃 𝑅))
6120, 4, 30, 52llnma1 34592 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6236, 37, 38, 39, 60, 61syl131anc 1336 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6335, 62pm2.61dane 2877 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6411, 63eqtrd 2655 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  cfv 5857  (class class class)co 6615  Basecbs 15800  lecple 15888  joincjn 16884  meetcmee 16885  Latclat 16985  Atomscatm 34069  HLchlt 34156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157
This theorem is referenced by:  cdlemg9a  35439  cdlemg12a  35450
  Copyright terms: Public domain W3C validator