Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnne2N Structured version   Visualization version   GIF version

Theorem 2llnne2N 33495
Description: Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2lnne.l = (le‘𝐾)
2lnne.j = (join‘𝐾)
2lnne.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2llnne2N ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑅 𝑄)) → (𝑅 𝑃) ≠ (𝑅 𝑄))

Proof of Theorem 2llnne2N
StepHypRef Expression
1 simpl 471 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴)) → 𝐾 ∈ HL)
2 simprr 791 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴)) → 𝑅𝐴)
3 simprl 789 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴)) → 𝑃𝐴)
4 2lnne.l . . . . . 6 = (le‘𝐾)
5 2lnne.j . . . . . 6 = (join‘𝐾)
6 2lnne.a . . . . . 6 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatlej2 33463 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑃 (𝑅 𝑃))
81, 2, 3, 7syl3anc 1317 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴)) → 𝑃 (𝑅 𝑃))
9 breq2 4581 . . . 4 ((𝑅 𝑃) = (𝑅 𝑄) → (𝑃 (𝑅 𝑃) ↔ 𝑃 (𝑅 𝑄)))
108, 9syl5ibcom 233 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴)) → ((𝑅 𝑃) = (𝑅 𝑄) → 𝑃 (𝑅 𝑄)))
1110necon3bd 2795 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴)) → (¬ 𝑃 (𝑅 𝑄) → (𝑅 𝑃) ≠ (𝑅 𝑄)))
12113impia 1252 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑅 𝑄)) → (𝑅 𝑃) ≠ (𝑅 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5789  (class class class)co 6526  lecple 15723  joincjn 16715  Atomscatm 33351  HLchlt 33438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-lub 16745  df-join 16747  df-lat 16817  df-ats 33355  df-atl 33386  df-cvlat 33410  df-hlat 33439
This theorem is referenced by:  2llnneN  33496
  Copyright terms: Public domain W3C validator