Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnmN Structured version   Visualization version   GIF version

Theorem 2lplnmN 34322
Description: If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2lplnm.j = (join‘𝐾)
2lplnm.m = (meet‘𝐾)
2lplnm.c 𝐶 = ( ⋖ ‘𝐾)
2lplnm.n 𝑁 = (LLines‘𝐾)
2lplnm.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2lplnmN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑁)

Proof of Theorem 2lplnmN
StepHypRef Expression
1 simpl3 1064 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → 𝑌𝑃)
2 simpl1 1062 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → 𝐾 ∈ HL)
3 hllat 34127 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4 eqid 2621 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 2lplnm.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
64, 5lplnbase 34297 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
74, 5lplnbase 34297 . . . . 5 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
8 2lplnm.m . . . . . 6 = (meet‘𝐾)
94, 8latmcl 16973 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
103, 6, 7, 9syl3an 1365 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
1110adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
1273ad2ant3 1082 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑌 ∈ (Base‘𝐾))
1312adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
14 simp1 1059 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
1563ad2ant2 1081 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
16 2lplnm.j . . . . . 6 = (join‘𝐾)
17 2lplnm.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
184, 16, 8, 17cvrexch 34183 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
1914, 15, 12, 18syl3anc 1323 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
2019biimpar 502 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌)𝐶𝑌)
21 2lplnm.n . . . 4 𝑁 = (LLines‘𝐾)
224, 17, 21, 5llncvrlpln 34321 . . 3 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)𝐶𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
232, 11, 13, 20, 22syl31anc 1326 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
241, 23mpbird 247 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  joincjn 16865  meetcmee 16866  Latclat 16966  ccvr 34026  HLchlt 34114  LLinesclln 34254  LPlanesclpl 34255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-lat 16967  df-clat 17029  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-llines 34261  df-lplanes 34262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator