MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lt4 Structured version   Visualization version   GIF version

Theorem 2lt4 11195
Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
2lt4 2 < 4

Proof of Theorem 2lt4
StepHypRef Expression
1 2lt3 11192 . 2 2 < 3
2 3lt4 11194 . 2 3 < 4
3 2re 11087 . . 3 2 ∈ ℝ
4 3re 11091 . . 3 3 ∈ ℝ
5 4re 11094 . . 3 4 ∈ ℝ
63, 4, 5lttri 10160 . 2 ((2 < 3 ∧ 3 < 4) → 2 < 4)
71, 2, 6mp2an 708 1 2 < 4
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 4651   < clt 10071  2c2 11067  3c3 11068  4c4 11069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-2 11076  df-3 11077  df-4 11078
This theorem is referenced by:  1lt4  11196  2lt5  11199  fz0to4untppr  12438  fzo0to42pr  12551  4bc2eq6  13111  sqrt2gt1lt2  14009  cos01bnd  14910  4sqlem12  15654  prdsvalstr  16107  cnfldfun  19752  pcoass  22818  pilem3  24201  ppiublem1  24921  bpos1  25002  2sqlem11  25148  usgrexmplef  26145  upgr4cycl4dv4e  27038  sqsscirc1  29939  hlhilsplus  37058  fmtno4prmfac  41255  sbgoldbalt  41440
  Copyright terms: Public domain W3C validator