MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Visualization version   GIF version

Theorem 2moswap 2576
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2moswap (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 2067 . . . 4 𝑦𝑦𝜑
21moexex 2570 . . 3 ((∃*𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦𝑥(∃𝑦𝜑𝜑))
32expcom 450 . 2 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
4 19.8a 2090 . . . . 5 (𝜑 → ∃𝑦𝜑)
54pm4.71ri 666 . . . 4 (𝜑 ↔ (∃𝑦𝜑𝜑))
65exbii 1814 . . 3 (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑𝜑))
76mobii 2521 . 2 (∃*𝑦𝑥𝜑 ↔ ∃*𝑦𝑥(∃𝑦𝜑𝜑))
83, 7syl6ibr 242 1 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1521  wex 1744  ∃*wmo 2499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-eu 2502  df-mo 2503
This theorem is referenced by:  2euswap  2577  2rmoswap  41505
  Copyright terms: Public domain W3C validator