MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mpt20 Structured version   Visualization version   GIF version

Theorem 2mpt20 6867
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.)
Hypotheses
Ref Expression
2mpt20.o 𝑂 = (𝑥𝐴, 𝑦𝐵𝐸)
2mpt20.u ((𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) = (𝑠𝐶, 𝑡𝐷𝐹))
Assertion
Ref Expression
2mpt20 (¬ ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝐶,𝑠,𝑡   𝐷,𝑠,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑡,𝑠)   𝑇(𝑥,𝑦,𝑡,𝑠)   𝐸(𝑥,𝑦,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑡,𝑠)   𝑋(𝑥,𝑦,𝑡,𝑠)   𝑌(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem 2mpt20
StepHypRef Expression
1 ianor 509 . 2 (¬ ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐶𝑇𝐷)) ↔ (¬ (𝑋𝐴𝑌𝐵) ∨ ¬ (𝑆𝐶𝑇𝐷)))
2 2mpt20.o . . . . . 6 𝑂 = (𝑥𝐴, 𝑦𝐵𝐸)
32mpt2ndm0 6860 . . . . 5 (¬ (𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) = ∅)
43oveqd 6652 . . . 4 (¬ (𝑋𝐴𝑌𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆𝑇))
5 0ov 6667 . . . 4 (𝑆𝑇) = ∅
64, 5syl6eq 2670 . . 3 (¬ (𝑋𝐴𝑌𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
7 notnotb 304 . . . 4 ((𝑋𝐴𝑌𝐵) ↔ ¬ ¬ (𝑋𝐴𝑌𝐵))
8 2mpt20.u . . . . . . 7 ((𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) = (𝑠𝐶, 𝑡𝐷𝐹))
98adantr 481 . . . . . 6 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑋𝑂𝑌) = (𝑠𝐶, 𝑡𝐷𝐹))
109oveqd 6652 . . . . 5 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠𝐶, 𝑡𝐷𝐹)𝑇))
11 eqid 2620 . . . . . . 7 (𝑠𝐶, 𝑡𝐷𝐹) = (𝑠𝐶, 𝑡𝐷𝐹)
1211mpt2ndm0 6860 . . . . . 6 (¬ (𝑆𝐶𝑇𝐷) → (𝑆(𝑠𝐶, 𝑡𝐷𝐹)𝑇) = ∅)
1312adantl 482 . . . . 5 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑠𝐶, 𝑡𝐷𝐹)𝑇) = ∅)
1410, 13eqtrd 2654 . . . 4 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
157, 14sylanbr 490 . . 3 ((¬ ¬ (𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
166, 15jaoi3 1010 . 2 ((¬ (𝑋𝐴𝑌𝐵) ∨ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
171, 16sylbi 207 1 (¬ ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1481  wcel 1988  c0 3907  (class class class)co 6635  cmpt2 6637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-xp 5110  df-dm 5114  df-iota 5839  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640
This theorem is referenced by:  wwlksnon0  26793
  Copyright terms: Public domain W3C validator