MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsb Structured version   Visualization version   GIF version

Theorem 2ndcsb 22051
Description: Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcsb (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Distinct variable group:   𝑥,𝐽

Proof of Theorem 2ndcsb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 is2ndc 22048 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 df-rex 3144 . . . 4 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) ↔ ∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
3 simprl 769 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ≼ ω)
4 ssfii 8877 . . . . . . . 8 (𝑥 ∈ TopBases → 𝑥 ⊆ (fi‘𝑥))
5 fvex 6677 . . . . . . . . . 10 (topGen‘𝑥) ∈ V
6 bastg 21568 . . . . . . . . . . 11 (𝑥 ∈ TopBases → 𝑥 ⊆ (topGen‘𝑥))
76adantr 483 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (topGen‘𝑥))
8 fiss 8882 . . . . . . . . . 10 (((topGen‘𝑥) ∈ V ∧ 𝑥 ⊆ (topGen‘𝑥)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
95, 7, 8sylancr 589 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
10 tgcl 21571 . . . . . . . . . . 11 (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top)
1110adantr 483 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top)
12 fitop 21502 . . . . . . . . . 10 ((topGen‘𝑥) ∈ Top → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
1311, 12syl 17 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
149, 13sseqtrd 4006 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (topGen‘𝑥))
15 2basgen 21592 . . . . . . . 8 ((𝑥 ⊆ (fi‘𝑥) ∧ (fi‘𝑥) ⊆ (topGen‘𝑥)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
164, 14, 15syl2an2r 683 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
17 simprr 771 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽)
1816, 17eqtr3d 2858 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘(fi‘𝑥)) = 𝐽)
193, 18jca 514 . . . . 5 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
2019eximi 1831 . . . 4 (∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
212, 20sylbi 219 . . 3 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
221, 21sylbi 219 . 2 (𝐽 ∈ 2ndω → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
23 fibas 21579 . . . . 5 (fi‘𝑥) ∈ TopBases
24 simpl 485 . . . . . . 7 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝑥 ≼ ω)
25 fictb 9661 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω))
2625elv 3499 . . . . . . 7 (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω)
2724, 26sylib 220 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (fi‘𝑥) ≼ ω)
28 simpr 487 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (topGen‘(fi‘𝑥)) = 𝐽)
2927, 28jca 514 . . . . 5 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
30 breq1 5061 . . . . . . 7 (𝑦 = (fi‘𝑥) → (𝑦 ≼ ω ↔ (fi‘𝑥) ≼ ω))
31 fveqeq2 6673 . . . . . . 7 (𝑦 = (fi‘𝑥) → ((topGen‘𝑦) = 𝐽 ↔ (topGen‘(fi‘𝑥)) = 𝐽))
3230, 31anbi12d 632 . . . . . 6 (𝑦 = (fi‘𝑥) → ((𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽) ↔ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)))
3332rspcev 3622 . . . . 5 (((fi‘𝑥) ∈ TopBases ∧ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3423, 29, 33sylancr 589 . . . 4 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
35 is2ndc 22048 . . . 4 (𝐽 ∈ 2ndω ↔ ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3634, 35sylibr 236 . . 3 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3736exlimiv 1927 . 2 (∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3822, 37impbii 211 1 (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5058  cfv 6349  ωcom 7574  cdom 8501  ficfi 8868  topGenctg 16705  Topctop 21495  TopBasesctb 21547  2ndωc2ndc 22040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-dju 9324  df-card 9362  df-acn 9365  df-topgen 16711  df-top 21496  df-bases 21548  df-2ndc 22042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator