Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsb Structured version   Visualization version   GIF version

Theorem 2ndcsb 21300
 Description: Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcsb (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Distinct variable group:   𝑥,𝐽

Proof of Theorem 2ndcsb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 is2ndc 21297 . . 3 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 df-rex 2947 . . . 4 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) ↔ ∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
3 simprl 809 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ≼ ω)
4 ssfii 8366 . . . . . . . . 9 (𝑥 ∈ TopBases → 𝑥 ⊆ (fi‘𝑥))
54adantr 480 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (fi‘𝑥))
6 fvex 6239 . . . . . . . . . 10 (topGen‘𝑥) ∈ V
7 bastg 20818 . . . . . . . . . . 11 (𝑥 ∈ TopBases → 𝑥 ⊆ (topGen‘𝑥))
87adantr 480 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (topGen‘𝑥))
9 fiss 8371 . . . . . . . . . 10 (((topGen‘𝑥) ∈ V ∧ 𝑥 ⊆ (topGen‘𝑥)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
106, 8, 9sylancr 696 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
11 tgcl 20821 . . . . . . . . . . 11 (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top)
1211adantr 480 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top)
13 fitop 20753 . . . . . . . . . 10 ((topGen‘𝑥) ∈ Top → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
1412, 13syl 17 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
1510, 14sseqtrd 3674 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (topGen‘𝑥))
16 2basgen 20842 . . . . . . . 8 ((𝑥 ⊆ (fi‘𝑥) ∧ (fi‘𝑥) ⊆ (topGen‘𝑥)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
175, 15, 16syl2anc 694 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
18 simprr 811 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽)
1917, 18eqtr3d 2687 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘(fi‘𝑥)) = 𝐽)
203, 19jca 553 . . . . 5 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
2120eximi 1802 . . . 4 (∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
222, 21sylbi 207 . . 3 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
231, 22sylbi 207 . 2 (𝐽 ∈ 2nd𝜔 → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
24 fibas 20829 . . . . 5 (fi‘𝑥) ∈ TopBases
25 simpl 472 . . . . . . 7 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝑥 ≼ ω)
26 vex 3234 . . . . . . . 8 𝑥 ∈ V
27 fictb 9105 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω)
2925, 28sylib 208 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (fi‘𝑥) ≼ ω)
30 simpr 476 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (topGen‘(fi‘𝑥)) = 𝐽)
3129, 30jca 553 . . . . 5 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
32 breq1 4688 . . . . . . 7 (𝑦 = (fi‘𝑥) → (𝑦 ≼ ω ↔ (fi‘𝑥) ≼ ω))
33 fveq2 6229 . . . . . . . 8 (𝑦 = (fi‘𝑥) → (topGen‘𝑦) = (topGen‘(fi‘𝑥)))
3433eqeq1d 2653 . . . . . . 7 (𝑦 = (fi‘𝑥) → ((topGen‘𝑦) = 𝐽 ↔ (topGen‘(fi‘𝑥)) = 𝐽))
3532, 34anbi12d 747 . . . . . 6 (𝑦 = (fi‘𝑥) → ((𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽) ↔ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)))
3635rspcev 3340 . . . . 5 (((fi‘𝑥) ∈ TopBases ∧ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3724, 31, 36sylancr 696 . . . 4 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
38 is2ndc 21297 . . . 4 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3937, 38sylibr 224 . . 3 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2nd𝜔)
4039exlimiv 1898 . 2 (∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2nd𝜔)
4123, 40impbii 199 1 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∃wrex 2942  Vcvv 3231   ⊆ wss 3607   class class class wbr 4685  ‘cfv 5926  ωcom 7107   ≼ cdom 7995  ficfi 8357  topGenctg 16145  Topctop 20746  TopBasesctb 20797  2nd𝜔c2ndc 21289 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-card 8803  df-acn 8806  df-cda 9028  df-topgen 16151  df-top 20747  df-bases 20798  df-2ndc 21291 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator