MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsep Structured version   Visualization version   GIF version

Theorem 2ndcsep 21385
Description: A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
2ndcsep.1 𝑋 = 𝐽
Assertion
Ref Expression
2ndcsep (𝐽 ∈ 2nd𝜔 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem 2ndcsep
Dummy variables 𝑓 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 21372 . 2 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
2 vex 3307 . . . . . . . . 9 𝑏 ∈ V
3 difss 3845 . . . . . . . . 9 (𝑏 ∖ {∅}) ⊆ 𝑏
4 ssdomg 8118 . . . . . . . . 9 (𝑏 ∈ V → ((𝑏 ∖ {∅}) ⊆ 𝑏 → (𝑏 ∖ {∅}) ≼ 𝑏))
52, 3, 4mp2 9 . . . . . . . 8 (𝑏 ∖ {∅}) ≼ 𝑏
6 simpr 479 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → 𝑏 ≼ ω)
7 domtr 8125 . . . . . . . 8 (((𝑏 ∖ {∅}) ≼ 𝑏𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
85, 6, 7sylancr 698 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
9 eldifsn 4425 . . . . . . . . 9 (𝑦 ∈ (𝑏 ∖ {∅}) ↔ (𝑦𝑏𝑦 ≠ ∅))
10 n0 4039 . . . . . . . . . 10 (𝑦 ≠ ∅ ↔ ∃𝑧 𝑧𝑦)
11 elunii 4549 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧 𝑏)
12 simpl 474 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧𝑦)
1311, 12jca 555 . . . . . . . . . . . . . 14 ((𝑧𝑦𝑦𝑏) → (𝑧 𝑏𝑧𝑦))
1413expcom 450 . . . . . . . . . . . . 13 (𝑦𝑏 → (𝑧𝑦 → (𝑧 𝑏𝑧𝑦)))
1514eximdv 1959 . . . . . . . . . . . 12 (𝑦𝑏 → (∃𝑧 𝑧𝑦 → ∃𝑧(𝑧 𝑏𝑧𝑦)))
1615imp 444 . . . . . . . . . . 11 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧(𝑧 𝑏𝑧𝑦))
17 df-rex 3020 . . . . . . . . . . 11 (∃𝑧 𝑏𝑧𝑦 ↔ ∃𝑧(𝑧 𝑏𝑧𝑦))
1816, 17sylibr 224 . . . . . . . . . 10 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧 𝑏𝑧𝑦)
1910, 18sylan2b 493 . . . . . . . . 9 ((𝑦𝑏𝑦 ≠ ∅) → ∃𝑧 𝑏𝑧𝑦)
209, 19sylbi 207 . . . . . . . 8 (𝑦 ∈ (𝑏 ∖ {∅}) → ∃𝑧 𝑏𝑧𝑦)
2120rgen 3024 . . . . . . 7 𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦
22 vuniex 7071 . . . . . . . 8 𝑏 ∈ V
23 eleq1 2791 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝑧𝑦 ↔ (𝑓𝑦) ∈ 𝑦))
2422, 23axcc4dom 9376 . . . . . . 7 (((𝑏 ∖ {∅}) ≼ ω ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
258, 21, 24sylancl 697 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
26 frn 6166 . . . . . . . . 9 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ran 𝑓 𝑏)
2726ad2antrl 766 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 𝑏)
28 vex 3307 . . . . . . . . . 10 𝑓 ∈ V
2928rnex 7217 . . . . . . . . 9 ran 𝑓 ∈ V
3029elpw 4272 . . . . . . . 8 (ran 𝑓 ∈ 𝒫 𝑏 ↔ ran 𝑓 𝑏)
3127, 30sylibr 224 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ∈ 𝒫 𝑏)
32 omelon 8656 . . . . . . . . . . 11 ω ∈ On
336adantr 472 . . . . . . . . . . 11 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ≼ ω)
34 ondomen 8973 . . . . . . . . . . 11 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
3532, 33, 34sylancr 698 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ∈ dom card)
36 ssnum 8975 . . . . . . . . . 10 ((𝑏 ∈ dom card ∧ (𝑏 ∖ {∅}) ⊆ 𝑏) → (𝑏 ∖ {∅}) ∈ dom card)
3735, 3, 36sylancl 697 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ∈ dom card)
38 ffn 6158 . . . . . . . . . . 11 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑓 Fn (𝑏 ∖ {∅}))
3938ad2antrl 766 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn (𝑏 ∖ {∅}))
40 dffn4 6234 . . . . . . . . . 10 (𝑓 Fn (𝑏 ∖ {∅}) ↔ 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
4139, 40sylib 208 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
42 fodomnum 8993 . . . . . . . . 9 ((𝑏 ∖ {∅}) ∈ dom card → (𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓 → ran 𝑓 ≼ (𝑏 ∖ {∅})))
4337, 41, 42sylc 65 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ (𝑏 ∖ {∅}))
448adantr 472 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ≼ ω)
45 domtr 8125 . . . . . . . 8 ((ran 𝑓 ≼ (𝑏 ∖ {∅}) ∧ (𝑏 ∖ {∅}) ≼ ω) → ran 𝑓 ≼ ω)
4643, 44, 45syl2anc 696 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ ω)
47 tgcl 20896 . . . . . . . . . 10 (𝑏 ∈ TopBases → (topGen‘𝑏) ∈ Top)
4847ad2antrr 764 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (topGen‘𝑏) ∈ Top)
49 unitg 20894 . . . . . . . . . . . 12 (𝑏 ∈ V → (topGen‘𝑏) = 𝑏)
502, 49ax-mp 5 . . . . . . . . . . 11 (topGen‘𝑏) = 𝑏
5150eqcomi 2733 . . . . . . . . . 10 𝑏 = (topGen‘𝑏)
5251clsss3 20986 . . . . . . . . 9 (((topGen‘𝑏) ∈ Top ∧ ran 𝑓 𝑏) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
5348, 27, 52syl2anc 696 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
54 ne0i 4029 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦𝑦 ≠ ∅)
5554anim2i 594 . . . . . . . . . . . . . . . . 17 ((𝑦𝑏𝑥𝑦) → (𝑦𝑏𝑦 ≠ ∅))
5655, 9sylibr 224 . . . . . . . . . . . . . . . 16 ((𝑦𝑏𝑥𝑦) → 𝑦 ∈ (𝑏 ∖ {∅}))
57 fnfvelrn 6471 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 Fn (𝑏 ∖ {∅}) ∧ 𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
5838, 57sylan 489 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
59 inelcm 4140 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑦) ∈ 𝑦 ∧ (𝑓𝑦) ∈ ran 𝑓) → (𝑦 ∩ ran 𝑓) ≠ ∅)
6059expcom 450 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑦) ∈ ran 𝑓 → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6158, 60syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6261ex 449 . . . . . . . . . . . . . . . . 17 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (𝑦 ∈ (𝑏 ∖ {∅}) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6362a2d 29 . . . . . . . . . . . . . . . 16 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦 ∈ (𝑏 ∖ {∅}) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6456, 63syl7 74 . . . . . . . . . . . . . . 15 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → ((𝑦𝑏𝑥𝑦) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6564exp4a 634 . . . . . . . . . . . . . 14 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦𝑏 → (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))))
6665ralimdv2 3063 . . . . . . . . . . . . 13 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦 → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6766imp 444 . . . . . . . . . . . 12 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6867ad2antlr 765 . . . . . . . . . . 11 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
69 eqidd 2725 . . . . . . . . . . . 12 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (topGen‘𝑏) = (topGen‘𝑏))
7051a1i 11 . . . . . . . . . . . 12 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 = (topGen‘𝑏))
71 simplll 815 . . . . . . . . . . . 12 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 ∈ TopBases)
7227adantr 472 . . . . . . . . . . . 12 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ran 𝑓 𝑏)
73 simpr 479 . . . . . . . . . . . 12 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 𝑏)
7469, 70, 71, 72, 73elcls3 21010 . . . . . . . . . . 11 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓) ↔ ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
7568, 74mpbird 247 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓))
7675ex 449 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑥 𝑏𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓)))
7776ssrdv 3715 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ⊆ ((cls‘(topGen‘𝑏))‘ran 𝑓))
7853, 77eqssd 3726 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)
79 breq1 4763 . . . . . . . . 9 (𝑥 = ran 𝑓 → (𝑥 ≼ ω ↔ ran 𝑓 ≼ ω))
80 fveq2 6304 . . . . . . . . . 10 (𝑥 = ran 𝑓 → ((cls‘(topGen‘𝑏))‘𝑥) = ((cls‘(topGen‘𝑏))‘ran 𝑓))
8180eqeq1d 2726 . . . . . . . . 9 (𝑥 = ran 𝑓 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏))
8279, 81anbi12d 749 . . . . . . . 8 (𝑥 = ran 𝑓 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)))
8382rspcev 3413 . . . . . . 7 ((ran 𝑓 ∈ 𝒫 𝑏 ∧ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8431, 46, 78, 83syl12anc 1437 . . . . . 6 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8525, 84exlimddv 1976 . . . . 5 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
86 unieq 4552 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
87 2ndcsep.1 . . . . . . . 8 𝑋 = 𝐽
8886, 51, 873eqtr4g 2783 . . . . . . 7 ((topGen‘𝑏) = 𝐽 𝑏 = 𝑋)
8988pweqd 4271 . . . . . 6 ((topGen‘𝑏) = 𝐽 → 𝒫 𝑏 = 𝒫 𝑋)
90 fveq2 6304 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → (cls‘(topGen‘𝑏)) = (cls‘𝐽))
9190fveq1d 6306 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → ((cls‘(topGen‘𝑏))‘𝑥) = ((cls‘𝐽)‘𝑥))
9291, 88eqeq12d 2739 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘𝐽)‘𝑥) = 𝑋))
9392anbi2d 742 . . . . . 6 ((topGen‘𝑏) = 𝐽 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9489, 93rexeqbidv 3256 . . . . 5 ((topGen‘𝑏) = 𝐽 → (∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9585, 94syl5ibcom 235 . . . 4 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9695impr 650 . . 3 ((𝑏 ∈ TopBases ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
9796rexlimiva 3130 . 2 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
981, 97sylbi 207 1 (𝐽 ∈ 2nd𝜔 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wex 1817  wcel 2103  wne 2896  wral 3014  wrex 3015  Vcvv 3304  cdif 3677  cin 3679  wss 3680  c0 4023  𝒫 cpw 4266  {csn 4285   cuni 4544   class class class wbr 4760  dom cdm 5218  ran crn 5219  Oncon0 5836   Fn wfn 5996  wf 5997  ontowfo 5999  cfv 6001  ωcom 7182  cdom 8070  cardccrd 8874  topGenctg 16221  Topctop 20821  TopBasesctb 20872  clsccl 20945  2nd𝜔c2ndc 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cc 9370
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-acn 8881  df-topgen 16227  df-top 20822  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-2ndc 21366
This theorem is referenced by:  met2ndc  22450
  Copyright terms: Public domain W3C validator