Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nn0ind Structured version   Visualization version   GIF version

Theorem 2nn0ind 39548
Description: Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
2nn0ind.1 𝜓
2nn0ind.2 𝜒
2nn0ind.3 (𝑦 ∈ ℕ → ((𝜃𝜏) → 𝜂))
2nn0ind.4 (𝑥 = 0 → (𝜑𝜓))
2nn0ind.5 (𝑥 = 1 → (𝜑𝜒))
2nn0ind.6 (𝑥 = (𝑦 − 1) → (𝜑𝜃))
2nn0ind.7 (𝑥 = 𝑦 → (𝜑𝜏))
2nn0ind.8 (𝑥 = (𝑦 + 1) → (𝜑𝜂))
2nn0ind.9 (𝑥 = 𝐴 → (𝜑𝜌))
Assertion
Ref Expression
2nn0ind (𝐴 ∈ ℕ0𝜌)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥   𝜌,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝜌(𝑦)   𝐴(𝑦)

Proof of Theorem 2nn0ind
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 11939 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ)
2 oveq1 7166 . . . . . . 7 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
32sbceq1d 3780 . . . . . 6 (𝑎 = 1 → ([(𝑎 − 1) / 𝑥]𝜑[(1 − 1) / 𝑥]𝜑))
4 dfsbcq 3777 . . . . . 6 (𝑎 = 1 → ([𝑎 / 𝑥]𝜑[1 / 𝑥]𝜑))
53, 4anbi12d 632 . . . . 5 (𝑎 = 1 → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([(1 − 1) / 𝑥]𝜑[1 / 𝑥]𝜑)))
6 oveq1 7166 . . . . . . 7 (𝑎 = 𝑦 → (𝑎 − 1) = (𝑦 − 1))
76sbceq1d 3780 . . . . . 6 (𝑎 = 𝑦 → ([(𝑎 − 1) / 𝑥]𝜑[(𝑦 − 1) / 𝑥]𝜑))
8 dfsbcq 3777 . . . . . 6 (𝑎 = 𝑦 → ([𝑎 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
97, 8anbi12d 632 . . . . 5 (𝑎 = 𝑦 → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)))
10 oveq1 7166 . . . . . . 7 (𝑎 = (𝑦 + 1) → (𝑎 − 1) = ((𝑦 + 1) − 1))
1110sbceq1d 3780 . . . . . 6 (𝑎 = (𝑦 + 1) → ([(𝑎 − 1) / 𝑥]𝜑[((𝑦 + 1) − 1) / 𝑥]𝜑))
12 dfsbcq 3777 . . . . . 6 (𝑎 = (𝑦 + 1) → ([𝑎 / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑))
1311, 12anbi12d 632 . . . . 5 (𝑎 = (𝑦 + 1) → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑)))
14 oveq1 7166 . . . . . . 7 (𝑎 = (𝐴 + 1) → (𝑎 − 1) = ((𝐴 + 1) − 1))
1514sbceq1d 3780 . . . . . 6 (𝑎 = (𝐴 + 1) → ([(𝑎 − 1) / 𝑥]𝜑[((𝐴 + 1) − 1) / 𝑥]𝜑))
16 dfsbcq 3777 . . . . . 6 (𝑎 = (𝐴 + 1) → ([𝑎 / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
1715, 16anbi12d 632 . . . . 5 (𝑎 = (𝐴 + 1) → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑)))
18 2nn0ind.1 . . . . . . 7 𝜓
19 ovex 7192 . . . . . . . 8 (1 − 1) ∈ V
20 1m1e0 11712 . . . . . . . . . 10 (1 − 1) = 0
2120eqeq2i 2837 . . . . . . . . 9 (𝑥 = (1 − 1) ↔ 𝑥 = 0)
22 2nn0ind.4 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
2321, 22sylbi 219 . . . . . . . 8 (𝑥 = (1 − 1) → (𝜑𝜓))
2419, 23sbcie 3815 . . . . . . 7 ([(1 − 1) / 𝑥]𝜑𝜓)
2518, 24mpbir 233 . . . . . 6 [(1 − 1) / 𝑥]𝜑
26 2nn0ind.2 . . . . . . 7 𝜒
27 1ex 10640 . . . . . . . 8 1 ∈ V
28 2nn0ind.5 . . . . . . . 8 (𝑥 = 1 → (𝜑𝜒))
2927, 28sbcie 3815 . . . . . . 7 ([1 / 𝑥]𝜑𝜒)
3026, 29mpbir 233 . . . . . 6 [1 / 𝑥]𝜑
3125, 30pm3.2i 473 . . . . 5 ([(1 − 1) / 𝑥]𝜑[1 / 𝑥]𝜑)
32 simprr 771 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [𝑦 / 𝑥]𝜑)
33 nncn 11649 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
34 ax-1cn 10598 . . . . . . . . . . 11 1 ∈ ℂ
35 pncan 10895 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3633, 34, 35sylancl 588 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
3736adantr 483 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ((𝑦 + 1) − 1) = 𝑦)
3837sbceq1d 3780 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
3932, 38mpbird 259 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [((𝑦 + 1) − 1) / 𝑥]𝜑)
40 2nn0ind.3 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝜃𝜏) → 𝜂))
41 ovex 7192 . . . . . . . . . . 11 (𝑦 − 1) ∈ V
42 2nn0ind.6 . . . . . . . . . . 11 (𝑥 = (𝑦 − 1) → (𝜑𝜃))
4341, 42sbcie 3815 . . . . . . . . . 10 ([(𝑦 − 1) / 𝑥]𝜑𝜃)
44 vex 3500 . . . . . . . . . . 11 𝑦 ∈ V
45 2nn0ind.7 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜏))
4644, 45sbcie 3815 . . . . . . . . . 10 ([𝑦 / 𝑥]𝜑𝜏)
4743, 46anbi12i 628 . . . . . . . . 9 (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) ↔ (𝜃𝜏))
48 ovex 7192 . . . . . . . . . 10 (𝑦 + 1) ∈ V
49 2nn0ind.8 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜂))
5048, 49sbcie 3815 . . . . . . . . 9 ([(𝑦 + 1) / 𝑥]𝜑𝜂)
5140, 47, 503imtr4g 298 . . . . . . . 8 (𝑦 ∈ ℕ → (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) → [(𝑦 + 1) / 𝑥]𝜑))
5251imp 409 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [(𝑦 + 1) / 𝑥]𝜑)
5339, 52jca 514 . . . . . 6 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑))
5453ex 415 . . . . 5 (𝑦 ∈ ℕ → (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑)))
555, 9, 13, 17, 31, 54nnind 11659 . . . 4 ((𝐴 + 1) ∈ ℕ → ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
561, 55syl 17 . . 3 (𝐴 ∈ ℕ0 → ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
57 nn0cn 11910 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
58 pncan 10895 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5957, 34, 58sylancl 588 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝐴 + 1) − 1) = 𝐴)
6059sbceq1d 3780 . . . . 5 (𝐴 ∈ ℕ0 → ([((𝐴 + 1) − 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6160biimpa 479 . . . 4 ((𝐴 ∈ ℕ0[((𝐴 + 1) − 1) / 𝑥]𝜑) → [𝐴 / 𝑥]𝜑)
6261adantrr 715 . . 3 ((𝐴 ∈ ℕ0 ∧ ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑)) → [𝐴 / 𝑥]𝜑)
6356, 62mpdan 685 . 2 (𝐴 ∈ ℕ0[𝐴 / 𝑥]𝜑)
64 2nn0ind.9 . . 3 (𝑥 = 𝐴 → (𝜑𝜌))
6564sbcieg 3813 . 2 (𝐴 ∈ ℕ0 → ([𝐴 / 𝑥]𝜑𝜌))
6663, 65mpbid 234 1 (𝐴 ∈ ℕ0𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  [wsbc 3775  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543  cmin 10873  cn 11641  0cn0 11900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-ltxr 10683  df-sub 10875  df-nn 11642  df-n0 11901
This theorem is referenced by:  jm2.18  39591  jm2.15nn0  39606  jm2.16nn0  39607
  Copyright terms: Public domain W3C validator