MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oppccomf Structured version   Visualization version   GIF version

Theorem 2oppccomf 16309
Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 16321. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
2oppccomf (compf𝐶) = (compf‘(oppCat‘𝑂))

Proof of Theorem 2oppccomf
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
2 eqid 2621 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 16302 . . . . . . . 8 (Base‘𝐶) = (Base‘𝑂)
4 eqid 2621 . . . . . . . 8 (comp‘𝑂) = (comp‘𝑂)
5 eqid 2621 . . . . . . . 8 (oppCat‘𝑂) = (oppCat‘𝑂)
6 simpr1 1065 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
7 simpr2 1066 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
8 simpr3 1067 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
93, 4, 5, 6, 7, 8oppcco 16301 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝑂)𝑥)𝑔))
10 eqid 2621 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
112, 10, 1, 8, 7, 6oppcco 16301 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝑂)𝑥)𝑔) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
129, 11eqtr2d 2656 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1312ralrimivw 2961 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1413ralrimivw 2961 . . . 4 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1514ralrimivvva 2966 . . 3 (⊤ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
16 eqid 2621 . . . 4 (comp‘(oppCat‘𝑂)) = (comp‘(oppCat‘𝑂))
17 eqid 2621 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
18 eqidd 2622 . . . 4 (⊤ → (Base‘𝐶) = (Base‘𝐶))
191, 22oppcbas 16307 . . . . 5 (Base‘𝐶) = (Base‘(oppCat‘𝑂))
2019a1i 11 . . . 4 (⊤ → (Base‘𝐶) = (Base‘(oppCat‘𝑂)))
2112oppchomf 16308 . . . . 5 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
2221a1i 11 . . . 4 (⊤ → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
2310, 16, 17, 18, 20, 22comfeq 16290 . . 3 (⊤ → ((compf𝐶) = (compf‘(oppCat‘𝑂)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓)))
2415, 23mpbird 247 . 2 (⊤ → (compf𝐶) = (compf‘(oppCat‘𝑂)))
2524trud 1490 1 (compf𝐶) = (compf‘(oppCat‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1036   = wceq 1480  wtru 1481  wcel 1987  wral 2907  cop 4156  cfv 5849  (class class class)co 6607  Basecbs 15784  Hom chom 15876  compcco 15877  Homf chomf 16251  compfccomf 16252  oppCatcoppc 16295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-hom 15890  df-cco 15891  df-homf 16255  df-comf 16256  df-oppc 16296
This theorem is referenced by:  oppcepi  16323  oppchofcl  16824  oppcyon  16833  oyoncl  16834
  Copyright terms: Public domain W3C validator