![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oppchomf | Structured version Visualization version GIF version |
Description: The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd 16594. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
2oppchomf | ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2756 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
2 | eqid 2756 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | 1, 2 | homffn 16550 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
4 | fnrel 6146 | . . . 4 ⊢ ((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel (Homf ‘𝐶)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Rel (Homf ‘𝐶) |
6 | relxp 5279 | . . . 4 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
7 | fndm 6147 | . . . . . 6 ⊢ ((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶))) | |
8 | 3, 7 | ax-mp 5 | . . . . 5 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
9 | 8 | releqi 5355 | . . . 4 ⊢ (Rel dom (Homf ‘𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶))) |
10 | 6, 9 | mpbir 221 | . . 3 ⊢ Rel dom (Homf ‘𝐶) |
11 | tpostpos2 7538 | . . 3 ⊢ ((Rel (Homf ‘𝐶) ∧ Rel dom (Homf ‘𝐶)) → tpos tpos (Homf ‘𝐶) = (Homf ‘𝐶)) | |
12 | 5, 10, 11 | mp2an 710 | . 2 ⊢ tpos tpos (Homf ‘𝐶) = (Homf ‘𝐶) |
13 | eqid 2756 | . . 3 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
14 | oppcbas.1 | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
15 | 14, 1 | oppchomf 16577 | . . 3 ⊢ tpos (Homf ‘𝐶) = (Homf ‘𝑂) |
16 | 13, 15 | oppchomf 16577 | . 2 ⊢ tpos tpos (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
17 | 12, 16 | eqtr3i 2780 | 1 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1628 × cxp 5260 dom cdm 5262 Rel wrel 5267 Fn wfn 6040 ‘cfv 6045 tpos ctpos 7516 Basecbs 16055 Homf chomf 16524 oppCatcoppc 16568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-tpos 7517 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-5 11270 df-6 11271 df-7 11272 df-8 11273 df-9 11274 df-n0 11481 df-z 11566 df-dec 11682 df-ndx 16058 df-slot 16059 df-base 16061 df-sets 16062 df-hom 16164 df-cco 16165 df-homf 16528 df-oppc 16569 |
This theorem is referenced by: 2oppccomf 16582 oppcepi 16596 oppchofcl 17097 oppcyon 17106 oyoncl 17107 |
Copyright terms: Public domain | W3C validator |