Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pmaplubN Structured version   Visualization version   GIF version

Theorem 2pmaplubN 34026
Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmaplub.u 𝑈 = (lub‘𝐾)
sspmaplub.a 𝐴 = (Atoms‘𝐾)
sspmaplub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
2pmaplubN ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))

Proof of Theorem 2pmaplubN
StepHypRef Expression
1 sspmaplub.u . . . . . . 7 𝑈 = (lub‘𝐾)
2 sspmaplub.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
3 sspmaplub.m . . . . . . 7 𝑀 = (pmap‘𝐾)
4 eqid 2609 . . . . . . 7 (⊥𝑃𝐾) = (⊥𝑃𝐾)
51, 2, 3, 42polvalN 34014 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈𝑆)))
65fveq2d 6092 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆))) = ((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆))))
76fveq2d 6092 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))))
82, 4polssatN 34008 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴)
92, 43polN 34016 . . . . 5 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
108, 9syldan 485 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
117, 10eqtr3d 2645 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
12 hlclat 33459 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
13 eqid 2609 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 2atssbase 33391 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
15 sstr 3575 . . . . . . 7 ((𝑆𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾))
1614, 15mpan2 702 . . . . . 6 (𝑆𝐴𝑆 ⊆ (Base‘𝐾))
1713, 1clatlubcl 16881 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝑈𝑆) ∈ (Base‘𝐾))
1812, 16, 17syl2an 492 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑈𝑆) ∈ (Base‘𝐾))
1913, 2, 3pmapssat 33859 . . . . 5 ((𝐾 ∈ HL ∧ (𝑈𝑆) ∈ (Base‘𝐾)) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
2018, 19syldan 485 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
211, 2, 3, 42polvalN 34014 . . . 4 ((𝐾 ∈ HL ∧ (𝑀‘(𝑈𝑆)) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2220, 21syldan 485 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2311, 22eqtr3d 2645 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2423, 5eqtr3d 2645 1 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wss 3539  cfv 5790  Basecbs 15641  lubclub 16711  CLatccla 16876  Atomscatm 33364  HLchlt 33451  pmapcpmap 33597  𝑃cpolN 34002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33053
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-undef 7263  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-psubsp 33603  df-pmap 33604  df-polarityN 34003
This theorem is referenced by:  paddunN  34027
  Copyright terms: Public domain W3C validator