Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pmaplubN Structured version   Visualization version   GIF version

Theorem 2pmaplubN 37064
Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmaplub.u 𝑈 = (lub‘𝐾)
sspmaplub.a 𝐴 = (Atoms‘𝐾)
sspmaplub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
2pmaplubN ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))

Proof of Theorem 2pmaplubN
StepHypRef Expression
1 sspmaplub.u . . . . . . 7 𝑈 = (lub‘𝐾)
2 sspmaplub.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
3 sspmaplub.m . . . . . . 7 𝑀 = (pmap‘𝐾)
4 eqid 2823 . . . . . . 7 (⊥𝑃𝐾) = (⊥𝑃𝐾)
51, 2, 3, 42polvalN 37052 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈𝑆)))
65fveq2d 6676 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆))) = ((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆))))
76fveq2d 6676 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))))
82, 4polssatN 37046 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴)
92, 43polN 37054 . . . . 5 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
108, 9syldan 593 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
117, 10eqtr3d 2860 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
12 hlclat 36496 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
13 eqid 2823 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 2atssbase 36428 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
15 sstr 3977 . . . . . . 7 ((𝑆𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾))
1614, 15mpan2 689 . . . . . 6 (𝑆𝐴𝑆 ⊆ (Base‘𝐾))
1713, 1clatlubcl 17724 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝑈𝑆) ∈ (Base‘𝐾))
1812, 16, 17syl2an 597 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑈𝑆) ∈ (Base‘𝐾))
1913, 2, 3pmapssat 36897 . . . . 5 ((𝐾 ∈ HL ∧ (𝑈𝑆) ∈ (Base‘𝐾)) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
2018, 19syldan 593 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
211, 2, 3, 42polvalN 37052 . . . 4 ((𝐾 ∈ HL ∧ (𝑀‘(𝑈𝑆)) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2220, 21syldan 593 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2311, 22eqtr3d 2860 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2423, 5eqtr3d 2860 1 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3938  cfv 6357  Basecbs 16485  lubclub 17554  CLatccla 17719  Atomscatm 36401  HLchlt 36488  pmapcpmap 36635  𝑃cpolN 37040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-undef 7941  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-psubsp 36641  df-pmap 36642  df-polarityN 37041
This theorem is referenced by:  paddunN  37065
  Copyright terms: Public domain W3C validator