MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrrn Structured version   Visualization version   GIF version

Theorem 2pthfrgrrn 27457
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.)
Hypotheses
Ref Expression
2pthfrgrrn.v 𝑉 = (Vtx‘𝐺)
2pthfrgrrn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthfrgrrn (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐸(𝑎,𝑏,𝑐)

Proof of Theorem 2pthfrgrrn
StepHypRef Expression
1 2pthfrgrrn.v . . 3 𝑉 = (Vtx‘𝐺)
2 2pthfrgrrn.e . . 3 𝐸 = (Edg‘𝐺)
31, 2frgrusgrfrcond 27434 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸))
4 reurex 3299 . . . . . 6 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)
5 prcom 4411 . . . . . . . . . 10 {𝑎, 𝑏} = {𝑏, 𝑎}
65eleq1i 2830 . . . . . . . . 9 ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸)
76anbi1i 733 . . . . . . . 8 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
8 zfpair2 5056 . . . . . . . . 9 {𝑏, 𝑎} ∈ V
9 zfpair2 5056 . . . . . . . . 9 {𝑏, 𝑐} ∈ V
108, 9prss 4496 . . . . . . . 8 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)
117, 10sylbbr 226 . . . . . . 7 ({{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
1211reximi 3149 . . . . . 6 (∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
134, 12syl 17 . . . . 5 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
1413a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1514ralimdvva 3102 . . 3 (𝐺 ∈ USGraph → (∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1615imp 444 . 2 ((𝐺 ∈ USGraph ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
173, 16sylbi 207 1 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  ∃!wreu 3052  cdif 3712  wss 3715  {csn 4321  {cpr 4323  cfv 6049  Vtxcvtx 26094  Edgcedg 26159  USGraphcusgr 26264   FriendGraph cfrgr 27431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-frgr 27432
This theorem is referenced by:  2pthfrgrrn2  27458  3cyclfrgrrn1  27460
  Copyright terms: Public domain W3C validator