MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrrn2 Structured version   Visualization version   GIF version

Theorem 2pthfrgrrn2 27429
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 1-Apr-2021.)
Hypotheses
Ref Expression
2pthfrgrrn.v 𝑉 = (Vtx‘𝐺)
2pthfrgrrn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthfrgrrn2 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐)))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐸(𝑎,𝑏,𝑐)

Proof of Theorem 2pthfrgrrn2
StepHypRef Expression
1 2pthfrgrrn.v . . 3 𝑉 = (Vtx‘𝐺)
2 2pthfrgrrn.e . . 3 𝐸 = (Edg‘𝐺)
31, 22pthfrgrrn 27428 . 2 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
4 frgrusgr 27406 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
52usgredgne 26289 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎𝑏)
65ex 449 . . . . . . . 8 (𝐺 ∈ USGraph → ({𝑎, 𝑏} ∈ 𝐸𝑎𝑏))
72usgredgne 26289 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏𝑐)
87ex 449 . . . . . . . 8 (𝐺 ∈ USGraph → ({𝑏, 𝑐} ∈ 𝐸𝑏𝑐))
96, 8anim12d 587 . . . . . . 7 (𝐺 ∈ USGraph → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎𝑏𝑏𝑐)))
104, 9syl 17 . . . . . 6 (𝐺 ∈ FriendGraph → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎𝑏𝑏𝑐)))
1110ad2antrr 764 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) ∧ 𝑏𝑉) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎𝑏𝑏𝑐)))
1211ancld 577 . . . 4 (((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) ∧ 𝑏𝑉) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
1312reximdva 3147 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
1413ralimdvva 3094 . 2 (𝐺 ∈ FriendGraph → (∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
153, 14mpd 15 1 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  wne 2924  wral 3042  wrex 3043  cdif 3704  {csn 4313  {cpr 4315  cfv 6041  Vtxcvtx 26065  Edgcedg 26130  USGraphcusgr 26235   FriendGraph cfrgr 27402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-hash 13304  df-edg 26131  df-umgr 26169  df-usgr 26237  df-frgr 27403
This theorem is referenced by:  2pthfrgr  27430  3cyclfrgrrn1  27431
  Copyright terms: Public domain W3C validator