Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prm Structured version   Visualization version   GIF version

Theorem 2pwp1prm 40802
Description: For every prime number of the form ((2↑𝑘) + 1) 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prm ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Distinct variable group:   𝑛,𝐾

Proof of Theorem 2pwp1prm
Dummy variables 𝑚 𝑝 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddprmdvds 15531 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
21adantlr 750 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
3 eldifi 3710 . . . . . . . 8 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℙ)
4 prmnn 15312 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
53, 4syl 17 . . . . . . 7 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ)
6 simpl 473 . . . . . . 7 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → 𝐾 ∈ ℕ)
7 nndivides 14914 . . . . . . 7 ((𝑝 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
85, 6, 7syl2anr 495 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
9 2re 11034 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 2 ∈ ℝ)
11 nnnn0 11243 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
12 1le2 11185 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
1312a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ≤ 2)
1410, 11, 13expge1d 12967 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ≤ (2↑𝑚))
15 1zzd 11352 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℤ)
16 2nn 11129 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
1716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 2 ∈ ℕ)
1817, 11nnexpcld 12970 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1918nnzd 11425 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℤ)
20 zleltp1 11372 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2115, 19, 20syl2anc 692 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2214, 21mpbid 222 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) + 1))
2318nncnd 10980 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℂ)
24 1cnd 10000 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ∈ ℂ)
25 subneg 10274 . . . . . . . . . . . . . . . . . 18 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
2625breq2d 4625 . . . . . . . . . . . . . . . . 17 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2723, 24, 26syl2anc 692 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2822, 27mpbird 247 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) − -1))
2928adantl 482 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < ((2↑𝑚) − -1))
3029ad2antlr 762 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → 1 < ((2↑𝑚) − -1))
3118nnred 10979 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℝ)
3231adantl 482 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ)
3316a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℕ)
3411adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
355nnnn0d 11295 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ0)
3635adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℕ0)
3734, 36nn0mulcld 11300 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℕ0)
3833, 37nnexpcld 12970 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℕ)
3938nnred 10979 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℝ)
40 1red 9999 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 ∈ ℝ)
419a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℝ)
42 nnz 11343 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4342adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
445nnzd 11425 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℤ)
4544adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℤ)
4643, 45zmulcld 11432 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℤ)
47 1lt2 11138 . . . . . . . . . . . . . . . . . 18 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 2)
49 prmgt1 15333 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
503, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 1 < 𝑝)
5150adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 𝑝)
52 nnre 10971 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
5352adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
545nnred 10979 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℝ)
5554adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℝ)
56 nngt0 10993 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 < 𝑚)
5756adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 0 < 𝑚)
58 ltmulgt11 10827 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 0 < 𝑚) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
5953, 55, 57, 58syl3anc 1323 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
6051, 59mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 · 𝑝))
61 ltexp2a 12852 . . . . . . . . . . . . . . . . 17 (((2 ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ (𝑚 · 𝑝) ∈ ℤ) ∧ (1 < 2 ∧ 𝑚 < (𝑚 · 𝑝))) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6241, 43, 46, 48, 60, 61syl32anc 1331 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6332, 39, 40, 62ltadd1dd 10582 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6463ad2antlr 762 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6523, 24subnegd 10343 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
6665eqcomd 2627 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6766adantl 482 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6867ad2antlr 762 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
69 oveq2 6612 . . . . . . . . . . . . . . . 16 ((𝑚 · 𝑝) = 𝐾 → (2↑(𝑚 · 𝑝)) = (2↑𝐾))
7069oveq1d 6619 . . . . . . . . . . . . . . 15 ((𝑚 · 𝑝) = 𝐾 → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7170adantl 482 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7264, 68, 713brtr3d 4644 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) < ((2↑𝐾) + 1))
73 neg1z 11357 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℤ
7473a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → -1 ∈ ℤ)
7519, 74zsubcld 11431 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) ∈ ℤ)
7675adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∈ ℤ)
77 fzofi 12713 . . . . . . . . . . . . . . . . . . 19 (0..^𝑝) ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (0..^𝑝) ∈ Fin)
7919adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℤ)
80 elfzonn0 12453 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0..^𝑝) → 𝑘 ∈ ℕ0)
81 zexpcl 12815 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝑚) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8279, 80, 81syl2an 494 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8373a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → -1 ∈ ℤ)
84 fzonnsub 12434 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0..^𝑝) → (𝑝𝑘) ∈ ℕ)
8584adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (𝑝𝑘) ∈ ℕ)
86 nnm1nn0 11278 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘) ∈ ℕ → ((𝑝𝑘) − 1) ∈ ℕ0)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((𝑝𝑘) − 1) ∈ ℕ0)
88 zexpcl 12815 . . . . . . . . . . . . . . . . . . . 20 ((-1 ∈ ℤ ∧ ((𝑝𝑘) − 1) ∈ ℕ0) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
8983, 87, 88syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
9082, 89zmulcld 11432 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
9178, 90fsumzcl 14399 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
92 dvdsmul1 14927 . . . . . . . . . . . . . . . . 17 ((((2↑𝑚) − -1) ∈ ℤ ∧ Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9376, 91, 92syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9493ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9523adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
96 neg1cn 11068 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
9796a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 ∈ ℂ)
98 pwdif 40800 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℕ0 ∧ (2↑𝑚) ∈ ℂ ∧ -1 ∈ ℂ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9936, 95, 97, 98syl3anc 1323 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
10099breq2d 4625 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
101100ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
10294, 101mpbird 247 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
103 2cnd 11037 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 2 ∈ ℂ)
104 nnnn0 11243 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
105103, 104expcld 12948 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (2↑𝐾) ∈ ℂ)
106 1cnd 10000 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → 1 ∈ ℂ)
107105, 106subnegd 10343 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → ((2↑𝐾) − -1) = ((2↑𝐾) + 1))
108107eqcomd 2627 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
109108adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
110109adantr 481 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
111 oveq2 6612 . . . . . . . . . . . . . . . . . . . 20 (𝐾 = (𝑚 · 𝑝) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
112111eqcoms 2629 . . . . . . . . . . . . . . . . . . 19 ((𝑚 · 𝑝) = 𝐾 → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
113112adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
114 2cnd 11037 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
115114, 36, 34expmuld 12951 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
116115ad2antlr 762 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
117113, 116eqtrd 2655 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = ((2↑𝑚)↑𝑝))
118 1exp 12829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℤ → (1↑𝑝) = 1)
11944, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → (1↑𝑝) = 1)
120119eqcomd 2627 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → 1 = (1↑𝑝))
121120negeqd 10219 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -1 = -(1↑𝑝))
122 1cnd 10000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
123 oddn2prm 15441 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑝)
124 oexpneg 14993 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑝 ∈ ℕ ∧ ¬ 2 ∥ 𝑝) → (-1↑𝑝) = -(1↑𝑝))
125122, 5, 123, 124syl3anc 1323 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → (-1↑𝑝) = -(1↑𝑝))
126125eqcomd 2627 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -(1↑𝑝) = (-1↑𝑝))
127121, 126eqtrd 2655 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → -1 = (-1↑𝑝))
128127adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 = (-1↑𝑝))
129128ad2antlr 762 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → -1 = (-1↑𝑝))
130117, 129oveq12d 6622 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) − -1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
131110, 130eqtrd 2655 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
132131breq2d 4625 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝))))
133102, 132mpbird 247 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1))
13430, 72, 133dvdsnprmd 15327 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ¬ ((2↑𝐾) + 1) ∈ ℙ)
135134pm2.21d 118 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
136135ex 450 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((𝑚 · 𝑝) = 𝐾 → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
137136com23 86 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → (((2↑𝐾) + 1) ∈ ℙ → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
138137impancom 456 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
139138impl 649 . . . . . . 7 ((((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
140139rexlimdva 3024 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1418, 140sylbid 230 . . . . 5 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
142141rexlimdva 3024 . . . 4 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
143142adantr 481 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1442, 143mpd 15 . 2 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
145144pm2.18da 459 1 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  cdif 3552  {csn 4148   class class class wbr 4613  (class class class)co 6604  Fincfn 7899  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210  -cneg 10211  cn 10964  2c2 11014  0cn0 11236  cz 11321  ..^cfzo 12406  cexp 12800  Σcsu 14350  cdvds 14907  cprime 15309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-gcd 15141  df-prm 15310  df-pc 15466
This theorem is referenced by:  2pwp1prmfmtno  40803
  Copyright terms: Public domain W3C validator