Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prmfmtno Structured version   Visualization version   GIF version

Theorem 2pwp1prmfmtno 40803
 Description: Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prmfmtno ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
Distinct variable groups:   𝑛,𝐾   𝑃,𝑛

Proof of Theorem 2pwp1prmfmtno
StepHypRef Expression
1 simp1 1059 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ)
2 eleq1 2686 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑃 ∈ ℙ ↔ ((2↑𝐾) + 1) ∈ ℙ))
32biimpa 501 . . . 4 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
433adant1 1077 . . 3 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ((2↑𝐾) + 1) ∈ ℙ)
5 2pwp1prm 40802 . . 3 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
61, 4, 5syl2anc 692 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
7 simpl 473 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑𝐾) + 1))
8 oveq2 6612 . . . . . . . . . . 11 (𝐾 = (2↑𝑛) → (2↑𝐾) = (2↑(2↑𝑛)))
98oveq1d 6619 . . . . . . . . . 10 (𝐾 = (2↑𝑛) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
109adantl 482 . . . . . . . . 9 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → ((2↑𝐾) + 1) = ((2↑(2↑𝑛)) + 1))
117, 10eqtrd 2655 . . . . . . . 8 ((𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛)) → 𝑃 = ((2↑(2↑𝑛)) + 1))
12 fmtno 40740 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
1312eqcomd 2627 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) = (FermatNo‘𝑛))
1411, 13sylan9eqr 2677 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝑃 = ((2↑𝐾) + 1) ∧ 𝐾 = (2↑𝑛))) → 𝑃 = (FermatNo‘𝑛))
1514exp32 630 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑃 = ((2↑𝐾) + 1) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1615com12 32 . . . . 5 (𝑃 = ((2↑𝐾) + 1) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
17163ad2ant2 1081 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛))))
1817imp 445 . . 3 (((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) ∧ 𝑛 ∈ ℕ0) → (𝐾 = (2↑𝑛) → 𝑃 = (FermatNo‘𝑛)))
1918reximdva 3011 . 2 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)))
206, 19mpd 15 1 ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃wrex 2908  ‘cfv 5847  (class class class)co 6604  1c1 9881   + caddc 9883  ℕcn 10964  2c2 11014  ℕ0cn0 11236  ↑cexp 12800  ℙcprime 15309  FermatNocfmtno 40738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-gcd 15141  df-prm 15310  df-pc 15466  df-fmtno 40739 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator