MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu4 Structured version   Visualization version   GIF version

Theorem 2reu4 4464
Description: Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2735. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
2reu4 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Distinct variable groups:   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2reu4
StepHypRef Expression
1 reurex 3430 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐴𝑦𝐵 𝜑)
2 rexn0 4452 . . . 4 (∃𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅)
31, 2syl 17 . . 3 (∃!𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅)
4 reurex 3430 . . . 4 (∃!𝑦𝐵𝑥𝐴 𝜑 → ∃𝑦𝐵𝑥𝐴 𝜑)
5 rexn0 4452 . . . 4 (∃𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅)
64, 5syl 17 . . 3 (∃!𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅)
73, 6anim12i 614 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
8 ne0i 4298 . . . . . 6 (𝑥𝐴𝐴 ≠ ∅)
9 ne0i 4298 . . . . . 6 (𝑦𝐵𝐵 ≠ ∅)
108, 9anim12i 614 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
1110a1d 25 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝜑 → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)))
1211rexlimivv 3290 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
1312adantr 483 . 2 ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
14 2reu4lem 4463 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))))
157, 13, 14pm5.21nii 382 1 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2108  wne 3014  wral 3136  wrex 3137  ∃!wreu 3138  c0 4289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-dif 3937  df-nul 4290
This theorem is referenced by:  opreu2reurex  6138  opreu2reuALT  30232
  Copyright terms: Public domain W3C validator