![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexuz | Structured version Visualization version GIF version |
Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.) |
Ref | Expression |
---|---|
2rexuz | ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexuz2 11932 | . . 3 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑))) | |
2 | 1 | exbii 1923 | . 2 ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑))) |
3 | df-rex 3056 | . 2 ⊢ (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑))) | |
4 | 2, 3 | bitr4i 267 | 1 ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1853 ∈ wcel 2139 ∃wrex 3051 class class class wbr 4804 ‘cfv 6049 ≤ cle 10267 ℤcz 11569 ℤ≥cuz 11879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-neg 10461 df-z 11570 df-uz 11880 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |