Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2rmoswap Structured version   Visualization version   GIF version

Theorem 2rmoswap 40485
Description: A condition allowing swap of restricted "at most one" and restricted existential quantifiers, analogous to 2moswap 2546. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Assertion
Ref Expression
2rmoswap (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑦𝐵𝑥𝐴 𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2rmoswap
StepHypRef Expression
1 df-rmo 2915 . . 3 (∃*𝑦𝐵 𝜑 ↔ ∃*𝑦(𝑦𝐵𝜑))
21ralbii 2974 . 2 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑))
3 df-ral 2912 . . . 4 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
4 moanimv 2530 . . . . 5 (∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
54albii 1744 . . . 4 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
63, 5bitr4i 267 . . 3 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
7 2moswap 2546 . . . 4 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃*𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃*𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑))))
8 df-rmo 2915 . . . . 5 (∃*𝑥𝐴𝑦𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
9 r19.42v 3084 . . . . . . 7 (∃𝑦𝐵 (𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
10 df-rex 2913 . . . . . . . 8 (∃𝑦𝐵 (𝑥𝐴𝜑) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)))
11 an12 837 . . . . . . . . 9 ((𝑦𝐵 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1211exbii 1771 . . . . . . . 8 (∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1310, 12bitri 264 . . . . . . 7 (∃𝑦𝐵 (𝑥𝐴𝜑) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
149, 13bitr3i 266 . . . . . 6 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1514mobii 2492 . . . . 5 (∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃*𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
168, 15bitri 264 . . . 4 (∃*𝑥𝐴𝑦𝐵 𝜑 ↔ ∃*𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
17 df-rmo 2915 . . . . 5 (∃*𝑦𝐵𝑥𝐴 𝜑 ↔ ∃*𝑦(𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
18 r19.42v 3084 . . . . . . 7 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
19 df-rex 2913 . . . . . . 7 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2018, 19bitr3i 266 . . . . . 6 ((𝑦𝐵 ∧ ∃𝑥𝐴 𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2120mobii 2492 . . . . 5 (∃*𝑦(𝑦𝐵 ∧ ∃𝑥𝐴 𝜑) ↔ ∃*𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2217, 21bitri 264 . . . 4 (∃*𝑦𝐵𝑥𝐴 𝜑 ↔ ∃*𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
237, 16, 223imtr4g 285 . . 3 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑦𝐵𝑥𝐴 𝜑))
246, 23sylbi 207 . 2 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑦𝐵𝑥𝐴 𝜑))
252, 24sylbi 207 1 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑦𝐵𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1478  wex 1701  wcel 1987  ∃*wmo 2470  wral 2907  wrex 2908  ∃*wrmo 2910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-eu 2473  df-mo 2474  df-ral 2912  df-rex 2913  df-rmo 2915
This theorem is referenced by:  2reu1  40487
  Copyright terms: Public domain W3C validator