Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbc5g Structured version   Visualization version   GIF version

Theorem 2sbc5g 38934
 Description: Theorem *13.22 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
2sbc5g ((𝐴𝐶𝐵𝐷) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑧,𝑤)

Proof of Theorem 2sbc5g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2662 . . . . . . 7 (𝑦 = 𝐵 → (𝑤 = 𝑦𝑤 = 𝐵))
21anbi2d 740 . . . . . 6 (𝑦 = 𝐵 → ((𝑧 = 𝑥𝑤 = 𝑦) ↔ (𝑧 = 𝑥𝑤 = 𝐵)))
32anbi1d 741 . . . . 5 (𝑦 = 𝐵 → (((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ ((𝑧 = 𝑥𝑤 = 𝐵) ∧ 𝜑)))
432exbidv 1892 . . . 4 (𝑦 = 𝐵 → (∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ ∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) ∧ 𝜑)))
5 dfsbcq 3470 . . . . 5 (𝑦 = 𝐵 → ([𝑦 / 𝑤]𝜑[𝐵 / 𝑤]𝜑))
65sbcbidv 3523 . . . 4 (𝑦 = 𝐵 → ([𝑥 / 𝑧][𝑦 / 𝑤]𝜑[𝑥 / 𝑧][𝐵 / 𝑤]𝜑))
74, 6bibi12d 334 . . 3 (𝑦 = 𝐵 → ((∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑) ↔ (∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) ∧ 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑)))
8 eqeq2 2662 . . . . . . 7 (𝑥 = 𝐴 → (𝑧 = 𝑥𝑧 = 𝐴))
98anbi1d 741 . . . . . 6 (𝑥 = 𝐴 → ((𝑧 = 𝑥𝑤 = 𝐵) ↔ (𝑧 = 𝐴𝑤 = 𝐵)))
109anbi1d 741 . . . . 5 (𝑥 = 𝐴 → (((𝑧 = 𝑥𝑤 = 𝐵) ∧ 𝜑) ↔ ((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑)))
11102exbidv 1892 . . . 4 (𝑥 = 𝐴 → (∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) ∧ 𝜑) ↔ ∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑)))
12 dfsbcq 3470 . . . 4 (𝑥 = 𝐴 → ([𝑥 / 𝑧][𝐵 / 𝑤]𝜑[𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
1311, 12bibi12d 334 . . 3 (𝑥 = 𝐴 → ((∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) ∧ 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)))
14 sbc5 3493 . . . 4 ([𝑥 / 𝑧][𝑦 / 𝑤]𝜑 ↔ ∃𝑧(𝑧 = 𝑥[𝑦 / 𝑤]𝜑))
15 19.42v 1921 . . . . . 6 (∃𝑤(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)) ↔ (𝑧 = 𝑥 ∧ ∃𝑤(𝑤 = 𝑦𝜑)))
16 anass 682 . . . . . . 7 (((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ (𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)))
1716exbii 1814 . . . . . 6 (∃𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ ∃𝑤(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)))
18 sbc5 3493 . . . . . . 7 ([𝑦 / 𝑤]𝜑 ↔ ∃𝑤(𝑤 = 𝑦𝜑))
1918anbi2i 730 . . . . . 6 ((𝑧 = 𝑥[𝑦 / 𝑤]𝜑) ↔ (𝑧 = 𝑥 ∧ ∃𝑤(𝑤 = 𝑦𝜑)))
2015, 17, 193bitr4ri 293 . . . . 5 ((𝑧 = 𝑥[𝑦 / 𝑤]𝜑) ↔ ∃𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑))
2120exbii 1814 . . . 4 (∃𝑧(𝑧 = 𝑥[𝑦 / 𝑤]𝜑) ↔ ∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑))
2214, 21bitr2i 265 . . 3 (∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑)
237, 13, 22vtocl2g 3301 . 2 ((𝐵𝐷𝐴𝐶) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
2423ancoms 468 1 ((𝐴𝐶𝐵𝐷) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030  [wsbc 3468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sbc 3469 This theorem is referenced by:  pm14.123b  38944
 Copyright terms: Public domain W3C validator