MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2shfti Structured version   Visualization version   GIF version

Theorem 2shfti 13749
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
2shfti ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))

Proof of Theorem 2shfti
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9 𝐹 ∈ V
21shftfval 13739 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
32breqd 4629 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦))
4 ovex 6633 . . . . . . . 8 (𝑥𝐵) ∈ V
5 vex 3194 . . . . . . . 8 𝑦 ∈ V
6 eleq1 2692 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → (𝑧 ∈ ℂ ↔ (𝑥𝐵) ∈ ℂ))
7 oveq1 6612 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → (𝑧𝐴) = ((𝑥𝐵) − 𝐴))
87breq1d 4628 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑧𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑤))
96, 8anbi12d 746 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤)))
10 breq2 4622 . . . . . . . . 9 (𝑤 = 𝑦 → (((𝑥𝐵) − 𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑦))
1110anbi2d 739 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
12 eqid 2626 . . . . . . . 8 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}
134, 5, 9, 11, 12brab 4963 . . . . . . 7 ((𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦))
143, 13syl6bb 276 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1514ad2antrr 761 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
16 subcl 10225 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
1716biantrurd 529 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1817ancoms 469 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1918adantll 749 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
20 sub32 10260 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = ((𝑥𝐵) − 𝐴))
21 subsub4 10259 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = (𝑥 − (𝐴 + 𝐵)))
2220, 21eqtr3d 2662 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
23223expb 1263 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2423ancoms 469 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2524breq1d 4628 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2615, 19, 253bitr2d 296 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2726pm5.32da 672 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)))
2827opabbidv 4683 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
29 ovex 6633 . . . 4 (𝐹 shift 𝐴) ∈ V
3029shftfval 13739 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
3130adantl 482 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
32 addcl 9963 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
331shftfval 13739 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3432, 33syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3528, 31, 343eqtr4d 2670 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  Vcvv 3191   class class class wbr 4618  {copab 4677  (class class class)co 6605  cc 9879   + caddc 9884  cmin 10211   shift cshi 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-ltxr 10024  df-sub 10213  df-shft 13736
This theorem is referenced by:  shftcan1  13752
  Copyright terms: Public domain W3C validator